Kepler-35

Last updated
Kepler-35
Kepler-35LightCurve.png
A light curve for Kepler-35, plotted from Kepler data [1]
Observation data
Epoch J2000       Equinox J2000
Constellation Cygnus [2]
Right ascension 19h 37m 59.2726s [3]
Declination +46° 41 22.953 [3]
Apparent magnitude  (V)15.96 (max) [4]
Characteristics
Spectral type G / G [5]
Variable type Algol [6]
Astrometry
Proper motion (μ)RA: −2.280(30) mas/yr [3]
Dec.: −8.305(33) mas/yr [3]
Parallax (π)0.5248±0.0260  mas [3]
Distance 6,200 ± 300  ly
(1,910 ± 90  pc)
Orbit [6]
Period (P)20.73  d
Semi-major axis (a)0.176  au
Eccentricity (e)0.16
Inclination (i)89.44°
Details [7]
Kepler-35A
Mass 0.8877  M
Radius 1.0284  R
Luminosity 0.94  L
Surface gravity (log g)4.3623  cgs
Temperature 5,606  K
Metallicity -0.13
Kepler-35B
Mass 0.8094  M
Radius 0.7861  R
Luminosity0.41  L
Surface gravity (log g)4.5556  cgs
Temperature 5,202  K
Metallicity -0.13
Age 8-12  Myr
Other designations
KOI-2937, KIC 9837578, 2MASS J19375927+4641231
Database references
SIMBAD data
KIC data

Kepler-35 is a binary star system in the constellation of Cygnus. These stars, called Kepler-35A and Kepler-35B have masses of 89% and 81% solar masses respectively, and both are assumed to be of spectral class G. They are separated by 0.176 AU, and complete an eccentric orbit around a common center of mass every 20.73 days. [7]

Contents

Description

The Kepler-35 system consists of two stars slightly less massive than the sun in a 21-day orbit aligned edge-on to us so that the stars eclipse each other. The orbit has a semi-major axis 0.2  au and a mild eccentricity of 0.16. of The precise measurements made by the Kepler satellite allow doppler beaming to be detected, as well as brightness variations due to the ellipsoidal shape of the stars and reflections of one star on the other. [7]

The primary star has a mass of 0.9  M and a radius fractionally larger than the sun. With an effective temperature of 5,606  K , its luminosity is 0.94  L. The secondary star has a mass of 0.8 M, a radius of 0.8  R, an effective surface temperature of 5,202 K, and a bolometric luminosity of 0.4 L. [7]

Planetary system

Kepler-35b is a gas giant that orbits the two stars in the Kepler-35 system. The planet is over an eighth of Jupiter's mass and has a radius of 0.728 Jupiter radii. The planet completes a somewhat eccentric orbit every 131.458 days from a semimajor axis of just over 0.6 AU, only about 3.5 times the semi-major axis between the parent stars. The proximity and eccentricity of the binary star as well as both stars have similar masses results the planet's orbit to significantly deviate from Keplerian orbit. [8] Studies have suggested that this planet must have been formed outside its current orbit and migrated inwards later. [9] The eccentricity of planetary orbit is acquired on the last stage of migration, due to interaction with the residual debris disk. [10]

Numerical simulation of formation of planetary system Kepler-35 has shown the formation of additional rocky planets in the habitable zone is highly likely, and these planetary orbits are stable. [11]

The Kepler-35 planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b0.127  MJ 0.60347131.4580.04290.760° 0.728  RJ

See also

References

  1. "Kepler Preview for KPLR008572936-2009259160929". Mikulski Archive for Space Telescopes. Space Telescope Science Institute. Retrieved 10 September 2022.
  2. Roman, Nancy G. (1987). "Identification of a constellation from a position". Publications of the Astronomical Society of the Pacific . 99 (617): 695. Bibcode:1987PASP...99..695R. doi: 10.1086/132034 . Constellation record for this object at VizieR.
  3. 1 2 3 4 5 Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi: 10.1051/0004-6361/202243940 . S2CID   244398875. Gaia DR3 record for this source at VizieR.
  4. Southworth, J. (2015). "DEBCat: A Catalog of Detached Eclipsing Binary Stars". Living Together: Planets. 496: 164. arXiv: 1411.1219 . Bibcode:2015ASPC..496..164S.
  5. Jean Schneider (2012). "Notes for star Kepler-35(AB)". Extrasolar Planets Encyclopaedia . Archived from the original on 24 February 2012. Retrieved 7 April 2012.
  6. 1 2 Coughlin, J. L.; López-Morales, M.; Harrison, T. E.; Ule, N.; Hoffman, D. I. (2011). "Low-mass Eclipsing Binaries in the Initial Kepler Data Release". The Astronomical Journal. 141 (3): 78. arXiv: 1007.4295 . Bibcode:2011AJ....141...78C. doi:10.1088/0004-6256/141/3/78. S2CID   38408077.
  7. 1 2 3 4 Welsh, William F.; et al. (2012). "Transiting circumbinary planets Kepler-34 b and Kepler-35 b". Nature. 481 (7382): 475–479. arXiv: 1204.3955 . Bibcode:2012Natur.481..475W. doi:10.1038/nature10768. PMID   22237021. S2CID   4426222.
  8. Leung, Gene C. K.; Hoi Lee, Man (2013). "An Analytic Theory for the Orbits of Circumbinary Planets". The Astrophysical Journal. 763 (2): 107. arXiv: 1212.2545 . Bibcode:2013ApJ...763..107L. doi: 10.1088/0004-637X/763/2/107 .
  9. Paardekooper, Sijme-Jan; Leinhardt, Zoë M.; Thébault, Philippe; Baruteau, Clément (2012). "HOW NOT TO BUILD TATOOINE: THE DIFFICULTY OF IN SITU FORMATION OF CIRCUMBINARY PLANETS KEPLER 16b, KEPLER 34b, AND KEPLER 35b". The Astrophysical Journal. 754 (1): L16. arXiv: 1206.3484 . Bibcode:2012ApJ...754L..16P. doi:10.1088/2041-8205/754/1/L16. S2CID   119202035.
  10. Pierens, A.; Nelson, R. P. (2013), "Migration and gas accretion scenarios for the Kepler 16, 34 and 35 circumbinary planets", Astronomy & Astrophysics, 556: A134, arXiv: 1307.0713 , Bibcode:2013A&A...556A.134P, doi:10.1051/0004-6361/201321777, S2CID   118597351
  11. Macau, E E N.; Domingos, R. C.; Izidoro, A.; Amarante, A.; Winter, O. C.; Barbosa, G. O. (2020), "Earth-size planet formation in the habitable zone of circumbinary stars", Monthly Notices of the Royal Astronomical Society, 494: 1045–1057, arXiv: 2003.11682 , doi: 10.1093/mnras/staa757 , S2CID   214667061

Further reading

Demidova, T. V.; Shevchenko, I. I. (2018). "Simulations of the Dynamics of the Debris Disks in the Systems Kepler-16, Kepler-34, and Kepler-35". Astronomy Letters. 44 (2): 119. arXiv: 1901.07390 . Bibcode:2018AstL...44..119D. doi:10.1134/S1063773718010012. S2CID   119226649.