Kepler-89e

Last updated
Kepler-89e
Discovery
Discovered by Lauren M. Weiss et al. [1]
Discovery date9 March 2013
Transit method
Orbital characteristics
0.3046 ± 0.0040 AU (45,570,000 ± 600,000 km) [1]
Eccentricity 0.019 ± 0.23 [1]
54.32031 ± 0.00012 [1] d
Inclination 89.76 ± 0.15 [1]
Semi-amplitude 4.5+2.3
−3.5
[1]
Star Kepler-89
Physical characteristics
Mean radius
6.56 ± 0.62 [1] REarth
Mass 35+18
−28
[1] MEarth
Mean density
0.60+0.26
−0.56
g cm−3
Temperature 584 [1]

    Kepler-89e, also known as KOI-94e, is an exoplanet in the constellation of Cygnus. It orbits Kepler-89.

    Contents

    Physical properties

    It is classed as a type III planet, making it cloudless and blue, and giving it the appearance of a larger version of Uranus and Neptune. It has a mass around 35 times that of Earth. [1] It has a similar density to Saturn, 0.60 g/cm3, [1] giving it a radius 6.56 times that of the Earth. [1] It orbits an F-type main-sequence star at a distance of 0.305 astronomical units (au), with a period of 54.32031 days, [1] making its orbit smaller than that of Mercury's. It has a very low eccentricity of 0.019. [1] It has a temperature of 584 K. [1]

    Host star

    Kepler-89e orbits the star Kepler-89. Kepler-89 has a mass of 1.18 solar masses, [2] and a radius of 1.32 solar radii. [2] It is 3.3 billion years old, younger than the Sun, [2] making its planets about 3,000,000,000 years old (3 Gyr). It has a temperature of 6,210 K, [2] making it appear bright yellowish-white.

    Related Research Articles

    <span class="mw-page-title-main">Super-Earth</span> Planet with a mass between Earth and Uranus

    A super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.

    <span class="mw-page-title-main">Kepler-4b</span> Extrasolar planet in the constellation Draco

    Kepler-4b, initially known as KOI 7.01, is an extrasolar planet first detected as a transit by the Kepler spacecraft. Its radius and mass are similar to that of Neptune; however, due to its proximity to its host star, it is substantially hotter than any planet in the Solar System. The planet's discovery was announced on January 4, 2010, in Washington, D.C., along with four other planets that were initially detected by the Kepler spacecraft and subsequently confirmed by telescopes at the W.M. Keck Observatory.

    <span class="mw-page-title-main">KOI-74</span> Binary star in the constellation Cygnus

    KOI-74 is an eclipsing binary star in the constellation of Cygnus. The primary star is an A-type main-sequence star with a temperature of 9,400 K. It lies in the field of view of the Kepler Mission and was determined to have a companion object in orbit around it which is smaller and hotter than the main star.

    <span class="mw-page-title-main">Kepler-11g</span> Extrasolar planet

    Kepler-11g is an exoplanet discovered in the orbit of the sunlike star Kepler-11 by the Kepler spacecraft, a NASA satellite tasked with searching for terrestrial planets. Kepler-11g is the outermost of the star's six planets. The planet orbits at a distance of nearly half the mean distance between Earth and the Sun. It completes an orbit every 118 days, placing it much further from its star than the system's inner five planets. Its estimated radius is a little over three times that of Earth, i.e. comparable to Neptune's size. Kepler-11g's distance from the inner planets made its confirmation more difficult than that of the inner planets, as scientists had to work to exhaustively disprove all reasonable alternatives before Kepler-11g could be confirmed. The planet's discovery, along with that of the other Kepler-11 planets, was announced on February 2, 2011. According to NASA, the Kepler-11 planets form the flattest and most compact system yet discovered.

    A Kepler object of interest (KOI) is a star observed by the Kepler space telescope that is suspected of hosting one or more transiting planets. KOIs come from a master list of 150,000 stars, which itself is generated from the Kepler Input Catalog (KIC). A KOI shows a periodic dimming, indicative of an unseen planet passing between the star and Earth, eclipsing part of the star. However, such an observed dimming is not a guarantee of a transiting planet, because other astronomical objects—such as an eclipsing binary in the background—can mimic a transit signal. For this reason, the majority of KOIs are as yet not confirmed transiting planet systems.

    <span class="mw-page-title-main">Kepler-35</span> Binary star system in the constellation Cygnus

    Kepler-35 is a binary star system in the constellation of Cygnus. These stars, called Kepler-35A and Kepler-35B have masses of 89% and 81% solar masses respectively, and both are assumed to be of spectral class G. They are separated by 0.176 AU, and complete an eccentric orbit around a common center of mass every 20.73 days.

    <span class="mw-page-title-main">Kepler-42</span> Red dwarf star in the constellation Cygnus

    Kepler-42, formerly known as KOI-961, is a red dwarf located in the constellation Cygnus and approximately 131 light years from the Sun. It has three known extrasolar planets, all of which are smaller than Earth in radius, and likely also in mass.

    Kepler-80, also known as KOI-500, is a red dwarf star of the spectral type M0V. This stellar classification places Kepler-80 among the very common, cool, class M stars that are still within their main evolutionary stage, known as the main sequence. Kepler-80, like other red dwarf stars, is smaller than the Sun, and it has both radius, mass, temperatures, and luminosity lower than that of our own star. Kepler-80 is found approximately 1,223 light years from the Solar System, in the stellar constellation Cygnus, also known as the Swan.

    <span class="mw-page-title-main">Kepler-69c</span> Super-Earth orbiting Kepler-69

    Kepler-69c is a confirmed super-Earth extrasolar planet, likely rocky, orbiting the Sun-like star Kepler-69, the outermore of two such planets discovered by NASA's Kepler spacecraft. It is located about 2,430 light-years from Earth.

    Kepler-32 is an M-type main sequence star located about 1070 light years from Earth, in the constellation of Cygnus. Discovered in January 2012 by the Kepler spacecraft, it shows a 0.58 ± 0.05 solar mass (M), a 0.53 ± 0.04 solar radius (R), and temperature of 3900.0 K, making it half the mass and radius of the Sun, two-thirds its temperature and 5% its luminosity.

    Kepler-89 is a star with four confirmed planets. Kepler-89 is a possible wide binary star.

    <span class="mw-page-title-main">Kepler-69</span> Star in the constellation Cygnus

    Kepler-69 is a G-type main-sequence star similar to the Sun in the constellation Cygnus, located about 2,430 ly (750 pc) from Earth. On April 18, 2013 it was announced that the star has two planets. Although initial estimates indicated that the terrestrial planet Kepler-69c might be within the star's habitable zone, further analysis showed that the planet very likely is interior to the habitable zone and is far more analogous to Venus than to Earth and thus completely inhospitable.

    <span class="mw-page-title-main">Kepler-138</span> Red dwarf in the constellation Lyra

    Kepler-138, also known as KOI-314, is a red dwarf located in the constellation Lyra, 219 light years from Earth. It is located within the field of vision of the Kepler spacecraft, the satellite that NASA's Kepler Mission used to detect planets transiting their stars.

    <span class="mw-page-title-main">KOI-256</span> Double star in the constellation Cygnus

    KOI-256 is a double star located in the constellation Cygnus approximately 575 light-years (176 pc) from Earth. While observations by the Kepler spacecraft suggested the system contained a gas giant exoplanet orbiting a red dwarf, later studies determined that KOI-256 was a binary system composed of the red dwarf orbiting a white dwarf.

    <span class="mw-page-title-main">Kepler-1229b</span> Super-Earth orbiting Kepler-1229

    Kepler-1229b is a confirmed super-Earth exoplanet, likely rocky, orbiting within the habitable zone of the red dwarf Kepler-1229, located about 870 light years from Earth in the constellation of Cygnus. It was discovered in 2016 by the Kepler space telescope. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured.

    Kepler-1229 is a red dwarf star located about 870 light-years (270 pc) away from the Earth in the constellation of Cygnus. It is known to host a super-Earth exoplanet within its habitable zone, Kepler-1229b, which was discovered in 2016.

    Kepler-419 is an F-type main-sequence star located about 3,400 light years from Earth in the constellation Cygnus. It is located within the field of vision of the Kepler spacecraft, the satellite that NASA's Kepler Mission used to detect planets that may be transiting their stars. In 2012, a potential planetary companion in a very eccentric orbit was detected around this star, but its planetary nature was not confirmed until 12 June 2014, when it was named Kepler-419b. A second planet was announced orbiting further out from the star in the same paper, named Kepler-419c.

    Kepler-1625 is a 14th-magnitude solar-mass star located in the constellation of Cygnus approximately 8,000 light years away. Its mass is within 5% of that of the Sun, but its radius is approximately 70% larger reflecting its more evolved state. A candidate gas giant exoplanet was detected by the Kepler Mission around the star in 2015, which was later validated as a likely real planet to >99% confidence in 2016. In 2018, the Hunt for Exomoons with Kepler project reported that this exoplanet has evidence for a Neptune-sized exomoon around it, based on observations from NASA’s Kepler Mission. Subsequent observations by the larger Hubble Space Telescope provided compounding evidence for a Neptune-sized satellite, with an on-going debate about the reality of this exomoon candidate.

    Kepler-13 or KOI-13 is a stellar triple star system consisting of Kepler-13A, around which an orbiting hot Jupiter exoplanet was discovered with the Kepler spacecraft in 2011, and Kepler-13B a common proper motion companion star which has an additional star orbiting it.

    <span class="mw-page-title-main">Kepler-1638</span> G-type star in the constellation Cygnus

    Kepler-1638 is a G-type main-sequence star located about 5,000 light years away in the constellation of Cygnus. One known exoplanet has been found orbiting the star: Kepler-1638b. This planet may be a potentially habitable super-Earth. As of January 2021, Kepler-1638 is the farthest star with a known potentially habitable exoplanet.

    References

    1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Weiss, Lauren M; et al. (2013). "The Mass of KOI-94d and a Relation for Planet Radius, Mass, and Incident Flux". The Astrophysical Journal. 768 (1): 14. arXiv: 1303.2150 . Bibcode:2013ApJ...768...14W. doi:10.1088/0004-637X/768/1/14. S2CID   14261965.
    2. 1 2 3 4 Morton, Timothy D.; et al. (2016). "False Positive Probabilities for Allkeplerobjects of Interest: 1284 Newly Validated Planets and 428 Likely False Positives". The Astrophysical Journal. 822 (2): 86. arXiv: 1605.02825 . Bibcode:2016ApJ...822...86M. doi:10.3847/0004-637X/822/2/86. S2CID   20832201.