Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Cygnus |
Right ascension | 19h 34m 58.01374s [1] |
Declination | +44° 26′ 53.9602″ [1] |
Apparent magnitude (V) | 11.72 [2] |
Characteristics | |
Spectral type | late G [3] |
Astrometry | |
Proper motion (μ) | RA: 38.195 mas/yr [1] Dec.: −16.309 mas/yr [1] |
Parallax (π) | 8.0085 ± 0.0104 mas [1] |
Distance | 407.3 ± 0.5 ly (124.9 ± 0.2 pc) |
Details [4] | |
Mass | 0.779+0.032 −0.046 M☉ |
Radius | 0.7475+0.0077 −0.0078 R☉ |
Temperature | 5058±50 K |
Metallicity [Fe/H] | −0.18±0.08 dex |
Other designations | |
Database references | |
SIMBAD | data |
KIC | data |
Kepler-78 (formerly known as KIC 8435766) is a 12th magnitude star 407 light-years (125 parsecs ) away in the constellation Cygnus. [2] Initially classified as an eclipsing binary with orbital period 0.710015 days, [5] it was later re-classified as a single star with significant interaction between star magnetosphere and close-in planet. [6] The radius of the star is of about 74% of the Sun, and the effective temperature is about 5100 K.
The Kepler-78 planetary system is composed of one known planet called Kepler-78b, a planet slightly bigger than Earth with an extremely close orbit to the parent star. The orbital period of this planet is about 8.5 hours because of its proximity to its star. While it has a similar density to the Earth (at 5.57 g/cm3), its surface temperature is about 1300 to 1500 K. [7]
Companion (in order from star) | Mass | Semimajor axis (AU) | Orbital period (days) | Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b | 1.68±0.27 M🜨 | 0.00901+0.00012 −0.00019 | 0.35500745±0.00000008 | 0 | 75.2+2.6 −2.1 ° | 1.201±0.028 R🜨 |
HAT-P-6 also named Sterrennacht is a star in the constellation Andromeda, located approximately 895 light years or 274 parsecs away from the Earth. It is an F-type star, implying that it is hotter and more massive than the Sun. The apparent magnitude of the star is +10.54, which means that it can only be visible through the telescope. The absolute magnitude of +3.36 is brighter than the Sun's +4.83, meaning that the star itself is brighter than the Sun. A search for a binary companion star using adaptive optics at the MMT Observatory turned out negative.
WASP-11/HAT-P-10 is a binary star. It is a primary main-sequence orange dwarf star. Secondary is M-dwarf with a projected separation of 42 AU. The system is located about 424 light-years away in the constellation Aries.
NN Serpentis is an eclipsing post-common envelope binary system approximately 1670 light-years away. The system comprises an eclipsing white dwarf and red dwarf. The two stars orbit each other every 0.13 days.
Kepler-10, formerly known as KOI-72, is a Sun-like star in the constellation of Draco that lies 607 light-years from Earth. Kepler-10 was targeted by NASA's Kepler space telescope, as it was seen as the first star identified by the Kepler mission that could be a possible host to a small, transiting exoplanet. The star is slightly less massive, slightly larger, and slightly cooler than the Sun; at an estimated 11.9 billion years in age, Kepler-10 is 2.3 times the age of the Sun.
Kepler-41 or KOI-196 is a star in the constellation Cygnus. It is a G-type main-sequence star, like the Sun, and it is located about 3,510 light-years away. It is fairly similar to the Sun, with 115% of its mass, a radius of 129% times that of the Sun, and a surface temperature of 5,750 K. Search for stellar companions to Kepler-41 in 2013-2014 has yielded inconclusive results, compatible with Kepler-41 being the single star.
Kepler-19 is a G7V star that is host to three known planets - Kepler-19b, Kepler-19c, and Kepler-19d. It is located about 720 light-years away in the constellation Lyra, five arcminutes northwest of the much more distant open cluster NGC 6791.
Kepler-16 is an eclipsing binary star system in the constellation of Cygnus that was targeted by the Kepler spacecraft. Both stars are smaller than the Sun; the primary, Kepler-16A, is a K-type main-sequence star and the secondary, Kepler-16B, is an M-type red dwarf. They are separated by 0.22 AU, and complete an orbit around a common center of mass every 41 days. The system is host to one known extrasolar planet in circumbinary orbit: the Saturn-sized Kepler-16b.
HAT-P-17 is a K-type main-sequence star about 92.4 parsecs (301 ly) away. It has a mass of about 0.857 ± 0.039 M☉. It is the host of two planets, HAT-P-17b and HAT-P-17c, both discovered in 2010. A search for a binary companion star using adaptive optics at the MMT Observatory was negative. A candidate companion was detected by a spectroscopic search of high-resolution K band infrared spectra taken at the Keck observatory.
Kepler-22 is a Sun-like star in the northern constellation of Cygnus, the swan, that is orbited by at least 1 planet found to be unequivocally within the star's habitable zone. It is located at the celestial coordinates: Right Ascension 19h 16m 52.2s, Declination +47° 53′ 3.9″. With an apparent visual magnitude of 11.7, this star is too faint to be seen with the naked eye. It can be viewed with a telescope having an aperture of at least 4 in (10 cm). The estimated distance to Kepler-22 is 644 light-years.
Kepler-20 is a star about 934 light-years from Earth in the constellation Lyra with a system of at least five, and possibly six, known planets. The apparent magnitude of this star is 12.51, so it cannot be seen with the unaided eye. Viewing it requires a telescope with an aperture of 15 cm (6 in) or more. It is slightly smaller than the Sun, with 94% of the Sun's radius and about 91% of the Sun's mass. The effective temperature of the photosphere is slightly cooler than that of the Sun at 5466 K, giving it the characteristic yellow hue of a stellar class G8 star. The abundance of elements other than hydrogen or helium, what astronomers term the metallicity, is approximately the same as in the Sun. It may be older than the Sun, although the margin of error here is relatively large.
Kepler-35 is a binary star system in the constellation of Cygnus. These stars, called Kepler-35A and Kepler-35B have masses of 89% and 81% solar masses respectively, and both are assumed to be of spectral class G. They are separated by 0.176 AU, and complete an eccentric orbit around a common center of mass every 20.73 days.
Kepler-68 is a Sun-like main sequence star located 471 light-years away in the constellation Cygnus. It is known to have at least four planets orbiting around it. The third planet has a mass similar to Jupiter but orbits within the habitable zone.
Kepler-37d is an exoplanet discovered by the Kepler space telescope in February 2013. It is located 209 light years away, in the constellation Lyra. With an orbital period of 39.8 days, it is the largest of the three known planets orbiting its parent star Kepler-37.
Kepler-78b is an exoplanet orbiting around the star Kepler-78. At the time of its discovery, it was the exoplanet most similar to Earth in terms of mass, radius, and mean density.
Kepler-102 is a star 353 light-years away in the constellation of Lyra. Kepler-102 is less luminous than the Sun. The star system does not contain any observable amount of dust. Kepler-102 is suspected to be orbited by a binary consisting of two red dwarf stars, at projected separations of 591 and 627 AU.
K2-3, also known as EPIC 201367065, is a red dwarf star with three known planets. It is on the borderline of being a late orange dwarf/K-type star, but because of its temperature, it is classified as a red dwarf.
Kepler-451 is an eclipsing post-common envelope binary star system that comprises two stars, a pulsating subdwarf B star and a small red dwarf star. It is located about 1,340 light-years away in the constellation Cygnus. It has been hypothesized to host one or more exoplanets.
Kepler-107 is a star about 1,694 light-years away in the constellation Cygnus. It is a spectral type G2 star. An imaging survey in 2016 failed to find any stellar companions to it.
Kepler-21, also known as HD 179070, is a star with a closely orbiting exoplanet in the northern constellation of Lyra. At an apparent visual magnitude of 8.25 this was the brightest star observed by the Kepler spacecraft to host a validated planet until the discovery of an exoplanet orbiting HD 212657 in 2018. This system is located at a distance of 354 light-years from the Sun based on parallax measurements, but is drifting closer with a radial velocity of −18.2 km/s.