L1014

Last updated
L1014
Dark nebula
Witness the Birth of a Star.jpg
L1014 (artistic image)
Observation data: J2000 epoch
Subtype Dense core
Class Lynds opacity class 6 [1]
Right ascension 21h 24m 06s
Declination +49° 59 07
Distance200 [1]   pc
Apparent diameter~2 [2]
Constellation Cygnus
Designations LDN 1014.
See also: Lists of nebulae

L1014 is a dark nebula in the Cygnus constellation. It may be among the most centrally condensed small dark clouds known, perhaps indicative of the earliest stages of star formation processes. This cloud harbors at its core a very young low-mass star named L1014 IRS; some astronomers have suggested that this object may be a brown dwarf or even a rogue planet at the earliest stage of its lifetime. [3]

Related Research Articles

<span class="mw-page-title-main">Star formation</span> Process by which dense regions of molecular clouds in interstellar space collapse to form stars

Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars. As a branch of astronomy, star formation includes the study of the interstellar medium (ISM) and giant molecular clouds (GMC) as precursors to the star formation process, and the study of protostars and young stellar objects as its immediate products. It is closely related to planet formation, another branch of astronomy. Star formation theory, as well as accounting for the formation of a single star, must also account for the statistics of binary stars and the initial mass function. Most stars do not form in isolation but as part of a group of stars referred as star clusters or stellar associations.

<span class="mw-page-title-main">Protostar</span> Early stage in the process of star formation

A protostar is a very young star that is still gathering mass from its parent molecular cloud. It is the earliest phase in the process of stellar evolution. For a low-mass star, it lasts about 500,000 years. The phase begins when a molecular cloud fragment first collapses under the force of self-gravity and an opaque, pressure-supported core forms inside the collapsing fragment. It ends when the infalling gas is depleted, leaving a pre-main-sequence star, which contracts to later become a main-sequence star at the onset of hydrogen fusion producing helium.

<span class="mw-page-title-main">Rogue planet</span> Planetary object without a planetary system

A rogueplanet, also termed a free-floating planet (FFP) or an isolated planetary-mass object (iPMO), is an interstellar object of planetary mass which is not gravitationally bound to any star or brown dwarf.

<span class="mw-page-title-main">Sombrero Galaxy</span> Galaxy in the constellation Virgo

The Sombrero Galaxy is a peculiar galaxy of unclear classification in the constellation borders of Virgo and Corvus, being about 9.55 megaparsecs from the Milky Way galaxy. It is a member of the Virgo II Groups, a series of galaxies and galaxy clusters strung out from the southern edge of the Virgo Supercluster. It has an isophotal diameter of approximately 29.09 to 32.32 kiloparsecs, making it slightly bigger in size than the Milky Way.

<span class="mw-page-title-main">Extinction (astronomy)</span> Interstellar absorption and scattering of light

In astronomy, extinction is the absorption and scattering of electromagnetic radiation by dust and gas between an emitting astronomical object and the observer. Interstellar extinction was first documented as such in 1930 by Robert Julius Trumpler. However, its effects had been noted in 1847 by Friedrich Georg Wilhelm von Struve, and its effect on the colors of stars had been observed by a number of individuals who did not connect it with the general presence of galactic dust. For stars lying near the plane of the Milky Way which are within a few thousand parsecs of the Earth, extinction in the visual band of frequencies is roughly 1.8 magnitudes per kiloparsec.

<span class="mw-page-title-main">Red-giant branch</span> Portion of the giant branch before helium ignition

The red-giant branch (RGB), sometimes called the first giant branch, is the portion of the giant branch before helium ignition occurs in the course of stellar evolution. It is a stage that follows the main sequence for low- to intermediate-mass stars. Red-giant-branch stars have an inert helium core surrounded by a shell of hydrogen fusing via the CNO cycle. They are K- and M-class stars much larger and more luminous than main-sequence stars of the same temperature.

<span class="mw-page-title-main">OTS 44</span> Celestial object in the constellation Chamaeleon

OTS 44 is a free-floating planetary-mass object or brown dwarf located at 550 light-years (170 pc) in the constellation Chamaeleon near the reflection nebula IC 2631. It is among the lowest-mass free-floating substellar objects, with approximately 11.5 times the mass of Jupiter, or approximately 1.1% that of the Sun. Its radius is not very well known and is estimated to be 23–57% that of the Sun.

<span class="mw-page-title-main">HD 269810</span> Star in the constellation Dorado

HD 269810 is a blue giant star in the Large Magellanic Cloud. It is one of the most massive and most luminous stars known, and one of only a handful of stars with the spectral type O2.

<span class="mw-page-title-main">HD 172555</span> Star in the constellation Pavo

HD 172555 is a white-hot Type A7V star located relatively close by, 95 light years from Earth in the direction of the constellation Pavo. Spectrographic evidence indicates a relatively recent collision between two planet-sized bodies that destroyed the smaller of the two, which had been at least the size of the Moon, and severely damaged the larger one, which was at least the size of Mercury. Evidence of the collision was detected by NASA's Spitzer Space Telescope.

<span class="mw-page-title-main">Abell 383</span> Galaxy cluster in the constellation Eridanus

Abell 383 is a galaxy cluster in the Abell catalogue.

<span class="mw-page-title-main">Westerhout 40</span> Star-forming region in the constellation Serpens

Westerhout 40 or W40 is a star-forming region in the Milky Way located in the constellation Serpens. In this region, interstellar gas forming a diffuse nebula surrounds a cluster of several hundred new-born stars. The distance to W40 is 436 ± 9 pc, making it one of the closest sites of formation of high-mass O-type and B-type stars. The ionizing radiation from the massive OB stars has created an H II region, which has an hour-glass morphology.

<span class="mw-page-title-main">Serpens–Aquila Rift</span> Region located in the constellations Serpens and Aquila that contains dark interstellar clouds

The Serpens–Aquila Rift (also known as the Aquila Rift) is a region of the sky in the constellations Aquila, Serpens Cauda, and eastern Ophiuchus containing dark interstellar clouds. The region forms part of the Great Rift, the nearby dark cloud of cosmic dust that obscures the middle of the galactic plane of the Milky Way, looking inwards and towards its other radial sectors. The clouds that form this structure are called "molecular clouds", constituting a phase of the interstellar medium which is cold and dense enough for molecules to form, particularly molecular hydrogen (H2). These clouds are opaque to light in the optical part of the spectrum due to the presence of interstellar dust grains mixed with the gaseous component of the clouds. Therefore, the clouds in the Serpens-Aquila Rift block light from background stars in the disk of the Galaxy, forming the dark rift. The complex is located in a direction towards the inner Galaxy, where molecular clouds are common, so it is possible that not all components of the rift are at the same distance and physically associated with each other.

HD 219623 is a solitary star in the northern circumpolar constellation of Cassiopeia. HD 219623 is its Henry Draper Catalogue designation. It has an apparent visual magnitude of 5.59, which lies in the brightness range that is visible to the naked eye. According to the Bortle scale, it can be observed from dark suburban skies. Parallax measurements place it at an estimated distance of around 67.2 light years. It has a relatively high proper motion, advancing 262 mas per year across the celestial sphere.

<span class="mw-page-title-main">NGC 4636</span> Galaxy in the constellation Virgo

NGC 4636 is an elliptical galaxy located in the constellation Virgo. It is a member of the NGC 4753 Group of galaxies, which is a member of the Virgo II Groups, a series of galaxies and galaxy clusters strung out from the southern edge of the Virgo Supercluster. It is located at a distance of about 55 million light years from Earth, which, given its apparent dimensions, means that NGC 4636 is about 105,000 light years across.

<span class="mw-page-title-main">NGC 5846</span> Galaxy in the constellation Virgo

NGC 5846 is an elliptical galaxy located in the constellation Virgo. It is located at a distance of circa 90 million light years from Earth, which, given its apparent dimensions, means that NGC 5846 is about 110,000 light years across. It was discovered by William Herschel on February 24, 1786. It lies near 110 Virginis and is part of the Herschel 400 Catalogue. It is a member of the NGC 5846 Group of galaxies, itself one of the Virgo III Groups strung out to the east of the Virgo Supercluster of galaxies.

<span class="mw-page-title-main">NGC 3511</span> Galaxy in the constellation Crater

NGC 3511 is an intermediate spiral galaxy located in the constellation Crater. It is located at a distance of circa 45 million light years from Earth, which, given its apparent dimensions, means that NGC 3511 is about 70,000 light years across. It was discovered by William Herschel on December 21, 1786. It lies two degrees west of Beta Crateris.

<span class="mw-page-title-main">NGC 4278</span> Galaxy in the constellation Coma Berenices

NGC 4278 is an elliptical galaxy located in the constellation Coma Berenices. It is located at a distance of circa 55 million light years from Earth, which, given its apparent dimensions, means that NGC 4278 is about 65,000 light years across. It was discovered by William Herschel on March 13, 1785. NGC 4278 is part of the Herschel 400 Catalogue and can be found about one and 3/4 of a degree northwest of Gamma Comae Berenices even with a small telescope.

<span class="mw-page-title-main">Barnard 203</span> Dark nebula in constellation Perseus

The dark nebula Barnard 203 or Lynds 1448 is located about one degree southwest of NGC 1333 in the Perseus molecular cloud, at a distance of about 800 light-years. Three infrared sources were observed in this region by IRAS, called IRS 1, IRS 2 and IRS 3.

<span class="mw-page-title-main">UGC 5101</span> Galaxy in the constellation of Ursa Major

UGC 5101 is a galaxy merger located in the constellation Ursa Major. It is located at a distance of about 530 million light years from Earth. It is an ultraluminous infrared galaxy. The total infrared luminosity of the galaxy is estimated to be 1011.95 L and the galaxy has a total star formation rate of 105 M per year.

References

  1. 1 2 Young, C. H.; Jorgensen, J. K.; Shirley, Y. L.; Kauffmann, J.; Huard, T.; Lai, S. P.; Lee, C. W.; Crapsi, A.; Bourke, T. L.; Dullemond, C. P.; Brooke, T. Y.; Porras, A.; Spiesman, W.; Allen, L. E.; Blake, G. A.; Evans Ii, N. J.; Harvey, P. M.; Koerner, D. W.; Mundy, L. G.; Myers, P. C.; Padgett, D. L.; Sargent, A. I.; Stapelfeldt, K. R.; Van Dishoeck, E. F.; Bertoldi, F.; Chapman, N.; Cieza, L.; Devries, C. H.; Ridge, N. A.; Wahhaj, Z. (2004). "A "Starless" Core that Isn't: Detection of a Source in the L1014 Dense Core with the Spitzer Space Telescope". The Astrophysical Journal Supplement Series. 154 (1): 396–401. arXiv: astro-ph/0406371 . Bibcode:2004ApJS..154..396Y. doi:10.1086/422818. S2CID   2417832.
  2. Dutra, C. M.; Bica, E. (2002). "A catalogue of dust clouds in the Galaxy". Astronomy and Astrophysics. 383 (2): 631. arXiv: astro-ph/0203256 . Bibcode:2002A&A...383..631D. doi:10.1051/0004-6361:20011761. S2CID   16899305.
  3. Bourke, Tyler L.; Crapsi, Antonio; Myers, Philip C.; et al. (2005). "Discovery of a Low-Mass Bipolar Molecular Outflow from L1014-IRS with the Submillimeter Array". The Astrophysical Journal . 633 (2): L129. arXiv: astro-ph/0509865 . Bibcode:2005ApJ...633L.129B. doi:10.1086/498449. S2CID   14721548.