WR 150

Last updated
WR 150
Observation data
Epoch J2000       Equinox J2000
Constellation Cygnus
Right ascension 21h 50m 05.57248s [1]
Declination +50° 42 24.7151 [1]
Apparent magnitude  (V)13.47
Characteristics
Evolutionary stage Wolf-Rayet
Spectral type WC5 [2]
B−V color index 0.53 [3]
Astrometry
Parallax (π)0.024 ± 0.0255  mas [1]
Distance 8,730+1,700
−1,380
[4]   pc
Absolute magnitude  (MV)−5.26 [2]
Details
Mass 24.8 [2]   M
Radius 3.59 [2]   R
Luminosity 724,000 [2]   L
Temperature 89,000 [2]   K
Other designations
2MASS  J21500557+5042247
Database references
SIMBAD data

WR 150 is a Wolf-Rayet star in the constellation of Cygnus. It is one of the early-type carbon sequence (WCE), and is of spectral type WC5. WR 150 is very far from the Earth, being 28,500 light-years from it.

Properties

Wolf-Rayet stars are extremely hot stars, and WR 150 is no exception, and is even hotter than most Wolf-Rayet stars. WR 150 has a temperature approaching 90,000 K, similar to WR 111. However unlike WR 111, WR 150 is more than 3 times more luminous than it. As a result, intrinsically, WR 150 is a full magnitude brighter than WR 111. [5]

WR 150 loses mass much more quickly than almost any WC star. It loses 10−4.19 M☉ (about 6.46×10−5  M ) a year, on a strong stellar wind with a terminal velocity of 3,000 kilometres per second. This means that in 50,000 years, WR 150 will have lost around 3.2 solar masses.

Related Research Articles

<span class="mw-page-title-main">WR 136</span> Star in the constellation of Cygnus

WR 136 is a Wolf–Rayet star located in the constellation Cygnus. It is in the center of the Crescent Nebula. Its age is estimated to be around 4.7 million years and it is nearing the end of its life. Within a few hundred thousand years, it is expected to explode as a supernova.

<span class="mw-page-title-main">WR 7</span> Star in the constellation Canis Major

WR 7 is a Wolf–Rayet star in the constellation of Canis Major. It lies at the centre of a complex bubble of gas which is shocked and partially ionised by the star's radiation and winds.

<span class="mw-page-title-main">WR 25</span> Binary star system in the constellation Carina

WR 25 is a binary star system in the turbulent star-forming region of the Carina Nebula, about 6,800 light-years from Earth. It contains a Wolf-Rayet star and a hot luminous companion and is a member of the Trumpler 16 cluster. The name comes from the Catalogue of Galactic Wolf–Rayet Stars.

<span class="mw-page-title-main">WR 148</span> Binary star in the constellation of Cygnus

WR 148 is a spectroscopic binary in the constellation Cygnus. The primary star is a Wolf–Rayet star and one of the most luminous stars known. The secondary has been suspected of being a stellar-mass black hole but may be a class O main sequence star.

WR 156 is a young massive and luminous Wolf–Rayet star in the constellation of Cepheus. Although it shows a WR spectrum, it is thought to be a young star still fusing hydrogen in its core.

<span class="mw-page-title-main">WR 134</span> Star in the constellation of Cygnus

WR 134 is a variable Wolf-Rayet star located around 6,000 light years away from Earth in the constellation of Cygnus, surrounded by a faint bubble nebula blown by the intense radiation and fast wind from the star. It is five times the radius of the sun, but due to a temperature over 63,000 K it is 400,000 times as luminous as the Sun.

WR 142 is a Wolf-Rayet star in the constellation Cygnus, an extremely rare star on the WO oxygen sequence. It is a luminous and very hot star, highly evolved and close to exploding as a supernova. It is suspected to be a binary star with a companion orbiting about 1 AU away.

<span class="mw-page-title-main">WR 102</span> Star in the constellation Sagittarius

WR 102 is a Wolf–Rayet star in the constellation Sagittarius, an extremely rare star on the WO oxygen sequence. It is a luminous and very hot star, highly evolved and close to exploding as a supernova.

WR 114 is a Wolf-Rayet star in the constellation of Scutum. It is an early type star of the carbon sequence (WCE) classified as WC5.

WR 135 is a variable Wolf-Rayet star located around 6,000 light years away from Earth in the constellation of Cygnus, surrounded by a faint bubble nebula blown by the intense radiation and fast wind from the star. It is just over four times the radius of the sun, but due to a temperature of 63,000 K it is 250,000 times as luminous as the sun.

<span class="mw-page-title-main">WR 137</span> Star in the constellation of Cygnus

WR 137 is a variable Wolf-Rayet star located around 6,000 light years away from Earth in the constellation of Cygnus.

<span class="mw-page-title-main">WR 1</span> Star in the constellation Cassiopeia

WR 1 is a Wolf-Rayet star located around 10,300 light years away from Earth in the constellation of Cassiopeia. It is only slightly more than twice the size of the sun, but due to a temperature over 100,000 K it is over 758,000 times as luminous as the sun.

WR 3 is a Wolf-Rayet star located around 9,500 light years away from Earth in the constellation of Cassiopeia.

<span class="mw-page-title-main">HD 151932</span> Star in the constellation of Scorpius

HD 151932, also known as WR 78, is a Wolf-Rayet star located in the constellation Scorpius, close to the galactic plane. Its distance is around 1,300 parsecs away from the Earth. Despite being a blue-colored Wolf-Rayet star, it is extremely reddened by interstellar extinction, so its apparent magnitude is brighter for longer-wavelength passbands. HD 151932 lies about 22 west of the open cluster NGC 6231, the center of the OB association Scorpius OB1; it is not clear whether it is a part of the association or not. With an apparent magnitude of about 6.5, it is one of the few Wolf-Rayet stars that can be seen with the naked eye.

<span class="mw-page-title-main">WR 128</span> Wolf-Rayet star in the constellation Sagitta

WR 128 is a Wolf–Rayet star located about 9,500 light years away in the constellation of Sagitta. A member of the WN class, WR 128's spectrum resembles that of a WN4 star, but hydrogen is clearly present in the star, making it the only known hydrogen-rich WN4 star in the galaxy. However, similar H-rich very early WN stars can be found in the LMC and especially in the SMC, but the only other galactic examples of this are WR 3 and WR 152.

WR 69 is a Wolf–Rayet star located 11,350 light years away in the constellation of Triangulum Australe. It is classified as a WC9 star, belonging to the late-type carbon sequence. WR 69 is also a prolific dust maker, hence the "d" in its spectral type.

<span class="mw-page-title-main">WR 120</span> Binary star system in the constellation Scutum

WR 120 is a binary containing two Wolf-Rayet stars in the constellation of Scutum, around 10,000 light years away. The primary is a hydrogen-free weak-lined WN7 star, the secondary is a hydrogen-free WN3 or 4 star, and the system is a possible member of the cluster Dolidze 33. From our point of view, WR 120 is reddened by 4.82 magnitudes, and it has the variable designation of V462 Scuti.

BAT99-7 is a WN-type Wolf-Rayet star located in the Large Magellanic Cloud, in the constellation of Dorado, about 160,000 light years away. The star has a spectrum containing extremely broad emission lines, and is the prototype for the "round line" stars, Wolf-Rayet stars whose spectra are characterized by strong and broad emission lines with round line profiles. The broad emission lines hint at an extremely high temperature of nearly 160,000 Kelvin, which would make it the hottest of all WN stars with known temperatures, as well as an extraordinarily large mass loss rate for a Wolf-Rayet star in the LMC, at 10−4.48 M/yr, which means that every 30,200 years, the star loses 1 solar mass worth of mass.

WR 119 is a Wolf–Rayet star located about 10,500 light years away in the constellation Scutum. WR 119 is classified as a WC9 star, belonging to the late-type carbon sequence of Wolf-Rayet stars. WR 119 is noteworthy for being the least luminous known Wolf-Rayet star, at just over 50,000 L. The most recent estimate is even lower, at just 42,700 L, based on the most recent analysis using Gaia DR2 data.

References

  1. 1 2 3 Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics . 616. A1. arXiv: 1804.09365 . Bibcode: 2018A&A...616A...1G . doi: 10.1051/0004-6361/201833051 . Gaia DR2 record for this source at VizieR.
  2. 1 2 3 4 5 6 Sander, A. A. C.; Hamann, W.-R.; Todt, H.; Hainich, R.; Shenar, T.; Ramachandran, V.; Oskinova, L. M. (2019-01-01). "The Galactic WC and WO stars. The impact of revised distances from Gaia DR2 and their role as massive black hole progenitors". Astronomy and Astrophysics. 621: A92. arXiv: 1807.04293 . Bibcode:2019A&A...621A..92S. doi:10.1051/0004-6361/201833712. ISSN   0004-6361. S2CID   67754788.
  3. Ducati, J. R. (2002). "VizieR Online Data Catalog: Catalogue of Stellar Photometry in Johnson's 11-color system". VizieR Online Data Catalog. 2237. Bibcode:2002yCat.2237....0D.
  4. Rate, Gemma; Crowther, Paul A. (2020-03-01). "Unlocking Galactic Wolf-Rayet stars with Gaia DR2 - I. Distances and absolute magnitudes". Monthly Notices of the Royal Astronomical Society. 493 (1): 1512–1529. arXiv: 1912.10125 . Bibcode:2020MNRAS.493.1512R. doi: 10.1093/mnras/stz3614 . ISSN   0035-8711.
  5. Sander, A. A. C.; Hamann, W.-R.; Todt, H.; Hainich, R.; Shenar, T.; Ramachandran, V.; Oskinova, L. M. (2019-01-01). "The Galactic WC and WO stars. The impact of revised distances from Gaia DR2 and their role as massive black hole progenitors". Astronomy and Astrophysics. 621: A92. arXiv: 1807.04293 . Bibcode:2019A&A...621A..92S. doi:10.1051/0004-6361/201833712. ISSN   0004-6361. S2CID   67754788.