A subcritical reactor is a nuclear fission reactor concept that produces fission without achieving criticality. Instead of sustaining a chain reaction, a subcritical reactor uses additional neutrons from an outside source. There are two general classes of such devices. One uses neutrons provided by a nuclear fusion machine, a concept known as a fusion–fission hybrid. The other uses neutrons created through spallation of heavy nuclei by charged particles such as protons accelerated by a particle accelerator, a concept known as an accelerator-driven system (ADS) or accelerator-driven sub-critical reactor.
A subcritical reactor can be used to destroy heavy isotopes contained in the used fuel from a conventional nuclear reactor, while at the same time producing electricity. The long-lived transuranic elements in nuclear waste can in principle be fissioned, releasing energy in the process and leaving behind the fission products which are shorter-lived. This would shorten considerably the time for disposal of radioactive waste. However, some isotopes have threshold fission cross sections and therefore require a fast reactor for being fissioned. While they can be transmuted into fissile material with thermal neutrons, some nuclides need as many as three successive neutron capture reactions to reach a fissile isotope and then yet another neutron to fission. Also, they release on average too few new neutrons per fission, so that with a fuel containing a high fraction of them, criticality cannot be reached. The accelerator-driven reactor is independent of this parameter and thus can utilize these nuclides. The three most important long-term radioactive isotopes that could advantageously be handled that way are neptunium-237, americium-241 and americium-243. The nuclear weapon material plutonium-239 is also suitable although it can be expended in a cheaper way as MOX fuel or inside existing fast reactors.
Besides nuclear waste incineration, there is interest in this type reactor because it is perceived as inherently safe, unlike a conventional reactor. In most types of critical reactors, there exist circumstances in which the rate of fission can increase rapidly, damaging or destroying the reactor and allowing the escape of radioactive material (see SL-1 or Chernobyl disaster). With a subcritical reactor, the reaction will cease unless continually fed neutrons from an outside source. However, the problem of heat generation even after ending the chain reaction remains, so that continuous cooling of such a reactor for a considerable period after shut-down remains vital in order to avoid overheating. However, even the issue of decay heat can be minimized as a subcritical reactor needn't assemble a critical mass of fissile material and can thus be built (nearly) arbitrarily small and thus reduce the required thermal mass of an emergency coolant system capable of absorbing all heat generated in the hours to days after a scram.
Another issue in which a subcritical reactor is different from a "normal" nuclear reactor (no matter whether it operates with fast or thermal neutrons) is that all "normal" nuclear power plants rely on delayed neutrons to maintain safe operating conditions. Depending on the fissioning nuclide, a bit under 1% of neutrons aren't released immediately upon fission (prompt neutrons) but rather with fractions of seconds to minutes of delay by fission products which beta decay followed by neutron emission. Those delayed neutrons are essential for reactor control as the time between fission "generations" is on such a short order of magnitude that macroscopic physical processes or human intervention cannot keep a power excursion under control. However, as only the delayed neutrons provide enough neutrons to maintain criticality, the reaction times become several orders of magnitude larger and reactor control becomes feasible. By contrast this means that too low a fraction of delayed neutrons makes an otherwise fissile material unsuitable for operating a "conventional" nuclear power plant. Conversely, a subcritical reactor actually has slightly improved properties with a fuel with low delayed neutron fractions. (See below). It just so happens that while 235
U the currently most used fissile material has a relatively high delayed neutron fraction, 239
Pu has a much lower one, which - in addition to other physical and chemical properties - limits the possible plutonium content in "normal" reactor fuel. For this reason spent MOX-fuel, which still contains significant amounts of plutonium (including fissile 239
Pu and - when "fresh" - 241
Pu) is usually not reprocessed due to the ingrowth of non-fissile 240
Pu which would require a higher plutonium content in fuel manufactured from this plutonium to maintain criticality. The other main component of spent fuel - reprocessed uranium - is usually only recovered as a byproduct and fetches worse prices on the uranium market than natural uranium due to ingrowth of 236
U and other "undesirable" isotopes of uranium.
Most current ADS designs propose a high-intensity proton accelerator with an energy of about 1 GeV, directed towards a spallation target or spallation neutron source. The source located in the heart of the reactor core contains liquid metal which is impacted by the beam, thus releasing neutrons and is cooled by circulating the liquid metal such as lead-bismuth towards a heat exchanger. The nuclear reactor core surrounding the spallation neutron source contains the fuel rods, the fuel being any fissile or fertile actinide mix, but preferable already with a certain amount of fissile material to not have to run at zero criticality during startup. Thereby, for each proton intersecting the spallation target, an average of 20 neutrons is released which fission the surrounding fissile part of the fuel and transmute atoms in the fertile part, "breeding" new fissile material. If the value of 20 neutrons per GeV expended is assumed, one neutron "costs" 50 MeV while fission (which requires one neutron) releases on the order of 200 MeV per actinide atom that is split. Efficiency can be increased by reducing the energy needed to produce a neutron, increasing the share of usable energy extracted from the fission (if a thermal process is used Carnot efficiency dictates that higher temperatures are needed to increase efficiency) and finally by getting criticality ever closer to 1 while still staying below it. An important factor in both efficiency and safety is how subcritical the reactor is. To simplify, the value of k(effective) that is used to give the criticality of a reactor (including delayed neutrons) can be interpreted as how many neutrons of each "generation" fission further nuclei. If k(effective) is 1, for every 1000 neutrons introduced, 1000 neutrons are produced that also fission further nuclei. Obviously the reaction rate would steadily increase in that case due to more and more neutrons being delivered from the neutron source. If k(effective) is just below 1, few neutrons have to be delivered from outside the reactor to keep the reaction at a steady state, increasing efficiency. On the other hand, in the extreme case of "zero criticality", that is k(effective)=0 (e.g. If the reactor is run for transmutation alone) all neutrons are "consumed" and none are produced inside the fuel. However, as neutronics can only ever be known to a certain degree of precision, the reactor must in practice allow a safety margin below criticality that depends on how well the neutronics are known and on the effect of the ingrowth of nuclides that decay via neutron emitting spontaneous fission such as Californium-252 or of nuclides that decay via neutron emission.
The neutron balance can be regulated or indeed shut off by adjusting the accelerator power so that the reactor would be below criticality. The additional neutrons provided by the spallation neutron source provide the degree of control as do the delayed neutrons in a conventional nuclear reactor, the difference being that spallation neutron source-driven neutrons are easily controlled by the accelerator. The main advantage is inherent safety. A conventional nuclear reactor's nuclear fuel possesses self-regulating properties such as the Doppler effect or void effect, which make these nuclear reactors safe. In addition to these physical properties of conventional reactors, in the subcritical reactor, whenever the neutron source is turned off, the fission reaction ceases and only the decay heat remains.
There are technical difficulties to overcome before ADS can become economical and eventually be integrated into future nuclear waste management. The accelerator must provide a high intensity and also be highly reliable - each outage of the accelerator in addition to causing a scram will put the system under immense thermal stress. There are concerns about the window separating the protons from the spallation target, which is expected to be exposed to stress under extreme conditions. However, recent experience with the MEGAPIE liquid metal neutron spallation source tested at the Paul Scherrer Institute has demonstrated a working beam window under a 0.78 MW intense proton beam. The chemical separation of the transuranic elements and the fuel manufacturing, as well as the structure materials, are important issues. Finally, the lack of nuclear data at high neutron energies limits the efficiency of the design. This latter issue can be overcome by introducing a neutron moderator between the neutron source and the fuel, but this can lead to increased leakage as the moderator will also scatter neutrons away from the fuel. Changing the geometry of the reactor can reduce but never eliminate leakage. Leaking neutrons are also of concern due to the activation products they produce and due to the physical damage to materials neutron irradiation can cause. Furthermore, there are certain advantages to the fast neutron spectrum which cannot be achieved with thermal neutrons as are the result of a moderator. On the other hand, thermal neutron reactors are the most common and well understood type of nuclear reactor and thermal neutrons also have advantages over fast neutrons.
Some laboratory experiments and many theoretical studies have demonstrated the theoretical possibility of such a plant. Carlo Rubbia, a nuclear physicist, Nobel laureate, and former director of CERN, was one of the first to conceive a design of a subcritical reactor, the so-called "energy amplifier". In 2005, several large-scale projects are going on in Europe and Japan to further develop subcritical reactor technology. In 2012 CERN scientists and engineers launched the International Thorium Energy Committee (iThEC), [1] an organization dedicated to pursuing this goal and which organized the ThEC13 [2] conference on the subject.
Subcritical reactors have been proposed both as a means of generating electric power and as a means of transmutation of nuclear waste, so the gain is twofold. However, the costs for construction, safety and maintenance of such complex installations are expected to be very high, not to mention the amount of research needed to develop a practical design (see above). There exist cheaper and reasonably safe waste management concepts, such as the transmutation in fast-neutron reactors. However, the solution of a subcritical reactor might be favoured for a better public acceptance – it is considered more acceptable to burn the waste than to bury it for hundreds of thousands of years. For future waste management, a few transmutation devices could be integrated into a large-scale nuclear program, hopefully increasing only slightly the overall costs.
The main challenge facing partitioning and transmutation operations is the need to enter nuclear cycles of extremely long duration: about 200 years. [3] Another disadvantage is the generation of high quantities of intermediate-level long-lived radioactive waste (ILW) which will also require deep geological disposal to be safely managed. A more positive aspect is the expected reduction in size of the repository, which was estimated to be an order of 4 to 6. Both positive and negative aspects were examined in an international benchmark study [4] coordinated by Forschungszentrum Jülich and financed by the European Union.
While ADS was originally conceptualized as a part of a light water reactor design, other proposals have been made that incorporate an ADS into other generation IV reactor concepts.[ citation needed ]
One such proposal calls for a gas-cooled fast reactor that is fueled primarily by plutonium and americium. The neutronic properties of americium make it difficult to use in any critical reactor, because it tends to make the moderator temperature coefficient more positive, decreasing stability. The inherent safety of an ADS, however, would allow americium to be safely burned. These materials also have good neutron economy, allowing the pitch-to-diameter ratio to be large, which allows for improved natural circulation and economics.
Subcritical methods for use in nuclear waste disposal that do not rely on neutron sources are also being developed. [5] These include systems that rely on the mechanism of muon capture, in which muons (μ−) produced by a compact accelerator-driven source transmute long-lived radioactive isotopes to stable isotopes. [6]
Generally the term "subcritical reactor" is reserved for artificial systems, but natural systems do exist—any natural source of fissile material exposed to cosmic and gamma rays (from even the sun) could be considered a subcritical reactor. This includes space launched satellites with radioisotope thermoelectric generators as well as any such exposed reservoirs.
Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactive decay.
In nuclear physics, a nuclear chain reaction occurs when one single nuclear reaction causes an average of one or more subsequent nuclear reactions, thus leading to the possibility of a self-propagating series or "positive feedback loop" of these reactions. The specific nuclear reaction may be the fission of heavy isotopes. A nuclear chain reaction releases several million times more energy per reaction than any chemical reaction.
In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal chain reaction can only be achieved with fissile material. The predominant neutron energy in a system may be typified by either slow neutrons or fast neutrons. Fissile material can be used to fuel thermal-neutron reactors, fast-neutron reactors and nuclear explosives.
A neutron source is any device that emits neutrons, irrespective of the mechanism used to produce the neutrons. Neutron sources are used in physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, and nuclear power. Neutron source variables include the energy of the neutrons emitted by the source, the rate of neutrons emitted by the source, the size of the source, the cost of owning and maintaining the source, and government regulations related to the source.
The nuclear fuel cycle, also called nuclear fuel chain, is the progression of nuclear fuel through a series of differing stages. It consists of steps in the front end, which are the preparation of the fuel, steps in the service period in which the fuel is used during reactor operation, and steps in the back end, which are necessary to safely manage, contain, and either reprocess or dispose of spent nuclear fuel. If spent fuel is not reprocessed, the fuel cycle is referred to as an open fuel cycle ; if the spent fuel is reprocessed, it is referred to as a closed fuel cycle.
Mixed oxide fuel, commonly referred to as MOX fuel, is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alternative to the low-enriched uranium fuel used in the light-water reactors that predominate nuclear power generation.
A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons, as opposed to slow thermal neutrons used in thermal-neutron reactors. Such a fast reactor needs no neutron moderator, but requires fuel that is relatively rich in fissile material when compared to that required for a thermal-neutron reactor. Around 20 land based fast reactors have been built, accumulating over 400 reactor years of operation globally. The largest of this was the Superphénix Sodium cooled fast reactor in France that was designed to deliver 1,242 MWe. Fast reactors have been intensely studied since the 1950s, as they provide certain advantages over the existing fleet of water cooled and water moderated reactors. These are:
In nuclear physics, an energy amplifier is a novel type of nuclear power reactor, a subcritical reactor, in which an energetic particle beam is used to stimulate a reaction, which in turn releases enough energy to power the particle accelerator and leave an energy profit for power generation. The concept has more recently been referred to as an accelerator-driven system (ADS) or accelerator-driven sub-critical reactor.
Spallation is a process in which fragments of material (spall) are ejected from a body due to impact or stress. In the context of impact mechanics it describes ejection of material from a target during impact by a projectile. In planetary physics, spallation describes meteoritic impacts on a planetary surface and the effects of stellar winds and cosmic rays on planetary atmospheres and surfaces. In the context of mining or geology, spallation can refer to pieces of rock breaking off a rock face due to the internal stresses in the rock; it commonly occurs on mine shaft walls. In the context of anthropology, spallation is a process used to make stone tools such as arrowheads by knapping. In nuclear physics, spallation is the process in which a heavy nucleus emits numerous nucleons as a result of being hit by a high-energy particle, thus greatly reducing its atomic weight. In industrial processes and bioprocessing the loss of tubing material due to the repeated flexing of the tubing within a peristaltic pump is termed spallation.
Fertile material is a material that, although not fissile itself, can be converted into a fissile material by neutron absorption.
Plutonium (94Pu) is an artificial element, except for trace quantities resulting from neutron capture by uranium, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was synthesized long before being found in nature, the first isotope synthesized being plutonium-238 in 1940. Twenty plutonium radioisotopes have been characterized. The most stable are plutonium-244 with a half-life of 80.8 million years; plutonium-242 with a half-life of 373,300 years; and plutonium-239 with a half-life of 24,110 years; and plutonium-240 with a half-life of 6,560 years. This element also has eight meta states; all have half-lives of less than one second.
Nuclear reactor physics is the field of physics that studies and deals with the applied study and engineering applications of chain reaction to induce a controlled rate of fission in a nuclear reactor for the production of energy. Most nuclear reactors use a chain reaction to induce a controlled rate of nuclear fission in fissile material, releasing both energy and free neutrons. A reactor consists of an assembly of nuclear fuel, usually surrounded by a neutron moderator such as regular water, heavy water, graphite, or zirconium hydride, and fitted with mechanisms such as control rods which control the rate of the reaction.
The thorium fuel cycle is a nuclear fuel cycle that uses an isotope of thorium, 232
Th
, as the fertile material. In the reactor, 232
Th
is transmuted into the fissile artificial uranium isotope 233
U
which is the nuclear fuel. Unlike natural uranium, natural thorium contains only trace amounts of fissile material, which are insufficient to initiate a nuclear chain reaction. Additional fissile material or another neutron source is necessary to initiate the fuel cycle. In a thorium-fuelled reactor, 232
Th
absorbs neutrons to produce 233
U
. This parallels the process in uranium breeder reactors whereby fertile 238
U
absorbs neutrons to form fissile 239
Pu
. Depending on the design of the reactor and fuel cycle, the generated 233
U
either fissions in situ or is chemically separated from the used nuclear fuel and formed into new nuclear fuel.
Weapons-grade nuclear material is any fissionable nuclear material that is pure enough to make a nuclear weapon and has properties that make it particularly suitable for nuclear weapons use. Plutonium and uranium in grades normally used in nuclear weapons are the most common examples.
Long-lived fission products (LLFPs) are radioactive materials with a long half-life produced by nuclear fission of uranium and plutonium. Because of their persistent radiotoxicity, it is necessary to isolate them from humans and the biosphere and to confine them in nuclear waste repositories for geological periods of time. The focus of this article is radioisotopes (radionuclides) generated by fission reactors.
Hybrid nuclear fusion–fission is a proposed means of generating power by use of a combination of nuclear fusion and fission processes.
A startup neutron source is a neutron source used for stable and reliable initiation of nuclear chain reaction in nuclear reactors, when they are loaded with fresh nuclear fuel, whose neutron flux from spontaneous fission is insufficient for a reliable startup, or after prolonged shutdown periods. Neutron sources ensure a constant minimal population of neutrons in the reactor core, sufficient for a smooth startup. Without them, the reactor could suffer fast power excursions during startup from state with too few self-generated neutrons.
Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed.
An accelerator-driven subcritical reactor (ADSR) is a nuclear reactor design formed by coupling a substantially subcritical nuclear reactor core with a high-energy proton or electron accelerator. It could use thorium as a fuel, which is more abundant than uranium.
The MYRRHA is a design project of a nuclear reactor coupled to a proton accelerator. This makes it an accelerator-driven system (ADS). MYRRHA will be a lead-bismuth cooled fast reactor with two possible configurations: sub-critical or critical.