Thermal stress

Last updated

In mechanics and thermodynamics, thermal stress is mechanical stress created by any change in temperature of a material. These stresses can lead to fracturing or plastic deformation depending on the other variables of heating, which include material types and constraints. [1] Temperature gradients, thermal expansion or contraction and thermal shocks are things that can lead to thermal stress. This type of stress is highly dependent on the thermal expansion coefficient which varies from material to material. In general, the greater the temperature change, the higher the level of stress that can occur. Thermal shock can result from a rapid change in temperature, resulting in cracking or shattering.

Contents

Temperature gradients [1]

When a material is rapidly heated or cooled, the surface and internal temperature will have a difference in temperature. Quick heating or cooling causes thermal expansion or contraction respectively, this localized movement of material causes thermal stresses. Imagine heating a cylinder, first the surface rises in temperature and the center remains the same initial temperature. After some time the center of the cylinder will reach the same temperature as the surface. During the heat up the surface is relatively hotter and will expand more than the center. An example of this is dental fillings can cause thermal stress in a person's mouth. Sometimes dentists use dental fillings with different thermal expansion coefficients than tooth enamel, the fillings will expand faster than the enamel and cause pain in a person's mouth.

Thermal expansion and contraction

Example of deformation induced by thermal stress on the rails Rail buckle.jpg
Example of deformation induced by thermal stress on the rails

Material will expand or contract depending on the material's thermal expansion coefficient. As long as the material is free to move, the material can expand or contract freely without generating stresses. Once this material is attached to a rigid body at multiple locations, thermal stresses can be created in the geometrically constrained region. This stress is calculated by multiplying the change in temperature, material's thermal expansion coefficient and material's Young's modulus (see formula below). is Young's modulus, is thermal expansion coefficient, is initial temperature and is the final temperature. [2] [3]

When is greater than , the constraints exert a compressive force on the material. The opposite happens while cooling; when is less than , the stress will be tensile. A welding example involves heating and cooling of metal which is a combination of thermal expansion, contraction, and temperature gradients. After a full cycle of heating and cooling, the metal is left with residual stress around the weld.

Thermal shock

This is a combination of a large temperature gradient due to low thermal conductivity, in addition to rapid change in temperature on brittle materials. The change in temperature causes stresses on the surface that are in tension, which encourages crack formation and propagation. Ceramics materials are usually susceptible to thermal shock. [2] An example is when glass is heated up to a high temperature and then quickly quenched in cold water. As the temperature of the glass falls rapidly, stresses are induced and causes fractures in the body of the glass which can be seen as cracks or even shattering in some cases.

Related Research Articles

Convection Fluid flow that occurs due to heterogeneous fluid properties and body forces.

Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity. When the cause of the convection is unspecified, convection due to the effects of thermal expansion and buoyancy can be assumed. Convection may also take place in soft solids or mixtures where particles can flow.

The process by which heat is transferred from the hotter end to the colder end of object is known as conduction.

In thermodynamics, the Joule–Thomson effect describes the temperature change of a real gas or liquid when it is forced through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. This procedure is called a throttling process or Joule–Thomson process. At room temperature, all gases except hydrogen, helium, and neon cool upon expansion by the Joule–Thomson process when being throttled through an orifice; these three gases experience the same effect but only at lower temperatures. Most liquids such as hydraulic oils will be warmed by the Joule–Thomson throttling process.

Heat transfer Transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

Thermoelectric effect Direct conversion of temperature differences to electric voltage and vice versa

The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice versa via a thermocouple. A thermoelectric device creates a voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, heat is transferred from one side to the other, creating a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold side.

Bimetallic strip

A bimetallic strip is used to convert a temperature change into mechanical displacement. The strip consists of two strips of different metals which expand at different rates as they are heated. The different expansions force the flat strip to bend one way if heated, and in the opposite direction if cooled below its initial temperature. The metal with the higher coefficient of thermal expansion is on the outer side of the curve when the strip is heated and on the inner side when cooled.

A temperature coefficient describes the relative change of a physical property that is associated with a given change in temperature. For a property R that changes when the temperature changes by dT, the temperature coefficient α is defined by the following equation:

Thermal shock is a type of rapidly transient mechanical load. By definition, it is a mechanical load caused by a rapid change of temperature of a certain point. It can be also extended to the case of a thermal gradient, which makes different parts of an object expand by different amounts. This differential expansion can be more directly understood in terms of strain, than in terms of stress, as it is shown in the following. At some point, this stress can exceed the tensile strength of the material, causing a crack to form. If nothing stops this crack from propagating through the material, it will cause the object's structure to fail.

A temperature gradient is a physical quantity that describes in which direction and at what rate the temperature changes the most rapidly around a particular location. The temperature gradient is a dimensional quantity expressed in units of degrees per unit length. The SI unit is kelvin per meter (K/m).

Thermal expansion Tendency of matter to change volume in response to a change in temperature

Thermal expansion is the tendency of matter to change its shape, area, volume, and density in response to a change in temperature, usually not including phase transitions.

Negative thermal expansion (NTE) is an unusual physicochemical process in which some materials contract upon heating, rather than expand as most other materials do. The most well-known material with NTE is water at 0~4 °C. Water's NTE is the reason why ice floats, rather than sinks, in liquid water. Materials which undergo NTE have a range of potential engineering, photonic, electronic, and structural applications. For example, if one were to mix a negative thermal expansion material with a "normal" material which expands on heating, it could be possible to use it as a thermal expansion compensator what might allow for forming composites with tailored or even close to zero thermal expansion.

In physics and engineering, the Fourier number (Fo) or Fourier modulus, named after Joseph Fourier, is a dimensionless number that characterizes transient heat conduction. Conceptually, it is the ratio of diffusive or conductive transport rate to the quantity storage rate, where the quantity may be either heat or matter (particles). The number derives from non-dimensionalization of the heat equation or Fick's second law and is used along with the Biot number to analyze time dependent transport phenomena.

Thermal barrier coating

Thermal barrier coatings (TBCs) are advanced materials systems usually applied to metallic surfaces operating at elevated temperatures, such as gas turbine or aero-engine parts, as a form of exhaust heat management. These 100 μm to 2 mm thick coatings of thermally insulating materials serve to insulate components from large and prolonged heat loads and can sustain an appreciable temperature difference between the load-bearing alloys and the coating surface. In doing so, these coatings can allow for higher operating temperatures while limiting the thermal exposure of structural components, extending part life by reducing oxidation and thermal fatigue. In conjunction with active film cooling, TBCs permit working fluid temperatures higher than the melting point of the metal airfoil in some turbine applications. Due to increasing demand for more efficient engines running at higher temperatures with better durability/lifetime and thinner coatings to reduce parasitic mass for rotating/moving components, there is significant motivation to develop new and advanced TBCs. The material requirements of TBCs are similar to those of heat shields, although in the latter application emissivity tends to be of greater importance.

Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature.

Concrete has relatively high compressive strength, but significantly lower tensile strength. The compressive strength is typically controlled with the ratio of water to cement when forming the concrete, and tensile strength is increased by additives, typically steel, to create reinforced concrete. In other words we can say concrete is made up of sand, ballast, cement and water.

A welding defect is any flaw that compromises the usefulness of a weldment. There is a great variety of welding defects. Welding imperfections are classified according to ISO 6520 while their acceptable limits are specified in ISO 5817 and ISO 10042.

In microscopy, scanning joule expansion microscopy (SJEM) is a form of scanning probe microscopy heavily based on atomic force microscopy (AFM) that maps the temperature distribution along a surface. Resolutions down to 10 nm have been achieved and 1 nm resolution is theoretically possible. Thermal measurements at the nanometer scale are of both academic and industrial interest, particularly in regards to nanomaterials and modern integrated circuits.

In materials science, toughening refers to the process of making a material more resistant to the propagation of cracks. When a crack propagates, the associated irreversible work in different materials classes is different. Thus, the most effective toughening mechanisms differ among different materials classes. The crack tip plasticity is important in toughening of metals and long-chain polymers. Ceramics have limited crack tip plasticity and primarily rely on different toughening mechanisms.

Solder fatigue is the mechanical degradation of solder due to deformation under cyclic loading. This can often occur at stress levels below the yield stress of solder as a result of repeated temperature fluctuations, mechanical vibrations, or mechanical loads. Techniques to evaluate solder fatigue behavior include finite element analysis and semi-analytical closed-form equations.

References

  1. 1 2 Elements of metallurgy and engineering alloys. Campbell, F. C. (Flake C.). Materials Park, Ohio: ASM International. 2008. ISBN   9780871708670. OCLC   608624525.{{cite book}}: CS1 maint: others (link)
  2. 1 2 Callister, William D. Jr. Materials science and engineering : an introduction. Rethwisch, David G. (8th ed.). Hoboken, NJ. ISBN   9780470419977. OCLC   401168960.
  3. F., Carter, Giles (1991). Materials science & engineering. Paul, Donald E. [Materials Park, Ohio]: ASM International. ISBN   9780871703996. OCLC   555222029.