Classical orthogonal polynomials

Last updated

In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials: the Hermite polynomials, Laguerre polynomials, Jacobi polynomials (including as a special case the Gegenbauer polynomials, Chebyshev polynomials, and Legendre polynomials [1] ).

Contents

They have many important applications in such areas as mathematical physics (in particular, the theory of random matrices), approximation theory, numerical analysis, and many others.

Classical orthogonal polynomials appeared in the early 19th century in the works of Adrien-Marie Legendre, who introduced the Legendre polynomials. In the late 19th century, the study of continued fractions to solve the moment problem by P. L. Chebyshev and then A.A. Markov and T.J. Stieltjes led to the general notion of orthogonal polynomials.

For given polynomials and the classical orthogonal polynomials are characterized by being solutions of the differential equation

with to be determined constants .

There are several more general definitions of orthogonal classical polynomials; for example, Andrews & Askey (1985) use the term for all polynomials in the Askey scheme.

Definition

In general, the orthogonal polynomials with respect to a weight satisfy

The relations above define up to multiplication by a number. Various normalisations are used to fix the constant, e.g.

The classical orthogonal polynomials correspond to the following three families of weights:

The standard normalisation (also called standardization) is detailed below.

Jacobi polynomials

For the Jacobi polynomials are given by the formula

They are normalised (standardized) by

and satisfy the orthogonality condition

The Jacobi polynomials are solutions to the differential equation

Important special cases

The Jacobi polynomials with are called the Gegenbauer polynomials (with parameter )

For , these are called the Legendre polynomials (for which the interval of orthogonality is [1, 1] and the weight function is simply 1):

For , one obtains the Chebyshev polynomials (of the second and first kind, respectively).

Hermite polynomials

The Hermite polynomials are defined by [2]

They satisfy the orthogonality condition

and the differential equation

Laguerre polynomials

The generalised Laguerre polynomials are defined by

(the classical Laguerre polynomials correspond to .)

They satisfy the orthogonality relation

and the differential equation

Differential equation

The classical orthogonal polynomials arise from a differential equation of the form

where Q is a given quadratic (at most) polynomial, and L is a given linear polynomial. The function f, and the constant λ, are to be found.

(Note that it makes sense for such an equation to have a polynomial solution.
Each term in the equation is a polynomial, and the degrees are consistent.)

This is a Sturm–Liouville type of equation. Such equations generally have singularities in their solution functions f except for particular values of λ. They can be thought of as eigenvector/eigenvalue problems: Letting D be the differential operator, , and changing the sign of λ, the problem is to find the eigenvectors (eigenfunctions) f, and the corresponding eigenvalues λ, such that f does not have singularities and D(f) = λf.

The solutions of this differential equation have singularities unless λ takes on specific values. There is a series of numbers λ0, λ1, λ2, ... that led to a series of polynomial solutions P0, P1, P2, ... if one of the following sets of conditions are met:

  1. Q is actually quadratic, L is linear, Q has two distinct real roots, the root of L lies strictly between the roots of Q, and the leading terms of Q and L have the same sign.
  2. Q is not actually quadratic, but is linear, L is linear, the roots of Q and L are different, and the leading terms of Q and L have the same sign if the root of L is less than the root of Q, or vice versa.
  3. Q is just a nonzero constant, L is linear, and the leading term of L has the opposite sign of Q.

These three cases lead to the Jacobi-like, Laguerre-like, and Hermite-like polynomials, respectively.

In each of these three cases, we have the following:

Because of the constant of integration, the quantity R(x) is determined only up to an arbitrary positive multiplicative constant. It will be used only in homogeneous differential equations (where this doesn't matter) and in the definition of the weight function (which can also be indeterminate.) The tables below will give the "official" values of R(x) and W(x).

Rodrigues' formula

Under the assumptions of the preceding section, Pn(x) is proportional to

This is known as Rodrigues' formula, after Olinde Rodrigues. It is often written

where the numbers en depend on the standardization. The standard values of en will be given in the tables below.

The numbers λn

Under the assumptions of the preceding section, we have

(Since Q is quadratic and L is linear, and are constants, so these are just numbers.)

Second form for the differential equation

Let

Then

Now multiply the differential equation

by R/Q, getting

or

This is the standard Sturm–Liouville form for the equation.

Third form for the differential equation

Let

Then

Now multiply the differential equation

by S/Q, getting

or

But , so

or, letting u = Sy,

Formulas involving derivatives

Under the assumptions of the preceding section, let P[r]
n
denote the r-th derivative of Pn. (We put the "r" in brackets to avoid confusion with an exponent.) P[r]
n
is a polynomial of degree n  r. Then we have the following:

There are also some mixed recurrences. In each of these, the numbers a, b, and c depend on n and r, and are unrelated in the various formulas.

There are an enormous number of other formulas involving orthogonal polynomials in various ways. Here is a tiny sample of them, relating to the Chebyshev, associated Laguerre, and Hermite polynomials:

Orthogonality

The differential equation for a particular λ may be written (omitting explicit dependence on x)

multiplying by yields

and reversing the subscripts yields

subtracting and integrating:

but it can be seen that

so that:

If the polynomials f are such that the term on the left is zero, and for , then the orthogonality relationship will hold:

for .

Derivation from differential equation

All of the polynomial sequences arising from the differential equation above are equivalent, under scaling and/or shifting of the domain, and standardizing of the polynomials, to more restricted classes. Those restricted classes are exactly "classical orthogonal polynomials".

Because all polynomial sequences arising from a differential equation in the manner described above are trivially equivalent to the classical polynomials, the actual classical polynomials are always used.

Jacobi polynomial

The Jacobi-like polynomials, once they have had their domain shifted and scaled so that the interval of orthogonality is [1, 1], still have two parameters to be determined. They are and in the Jacobi polynomials, written . We have and . Both and are required to be greater than 1. (This puts the root of L inside the interval of orthogonality.)

When and are not equal, these polynomials are not symmetrical about x = 0.

The differential equation

is Jacobi's equation.

For further details, see Jacobi polynomials.

Gegenbauer polynomials

When one sets the parameters and in the Jacobi polynomials equal to each other, one obtains the Gegenbauer or ultraspherical polynomials. They are written , and defined as

We have and . The parameter is required to be greater than 1/2.

(Incidentally, the standardization given in the table below would make no sense for α = 0 and n ≠ 0, because it would set the polynomials to zero. In that case, the accepted standardization sets instead of the value given in the table.)

Ignoring the above considerations, the parameter is closely related to the derivatives of :

or, more generally:

All the other classical Jacobi-like polynomials (Legendre, etc.) are special cases of the Gegenbauer polynomials, obtained by choosing a value of and choosing a standardization.

For further details, see Gegenbauer polynomials.

Legendre polynomials

The differential equation is

This is Legendre's equation.

The second form of the differential equation is:

The recurrence relation is

A mixed recurrence is

Rodrigues' formula is

For further details, see Legendre polynomials.

Associated Legendre polynomials

The Associated Legendre polynomials, denoted where and are integers with , are defined as

The m in parentheses (to avoid confusion with an exponent) is a parameter. The m in brackets denotes the m-th derivative of the Legendre polynomial.

These "polynomials" are misnamed—they are not polynomials when m is odd.

They have a recurrence relation:

For fixed m, the sequence are orthogonal over [1, 1], with weight 1.

For given m, are the solutions of

Chebyshev polynomials

The differential equation is

This is Chebyshev's equation .

The recurrence relation is

Rodrigues' formula is

These polynomials have the property that, in the interval of orthogonality,

(To prove it, use the recurrence formula.)

This means that all their local minima and maxima have values of 1 and +1, that is, the polynomials are "level". Because of this, expansion of functions in terms of Chebyshev polynomials is sometimes used for polynomial approximations in computer math libraries.

Some authors use versions of these polynomials that have been shifted so that the interval of orthogonality is [0, 1] or [2, 2].

There are also Chebyshev polynomials of the second kind, denoted

We have:

For further details, including the expressions for the first few polynomials, see Chebyshev polynomials.

Laguerre polynomials

The most general Laguerre-like polynomials, after the domain has been shifted and scaled, are the Associated Laguerre polynomials (also called generalized Laguerre polynomials), denoted . There is a parameter , which can be any real number strictly greater than 1. The parameter is put in parentheses to avoid confusion with an exponent. The plain Laguerre polynomials are simply the version of these:

The differential equation is

This is Laguerre's equation.

The second form of the differential equation is

The recurrence relation is

Rodrigues' formula is

The parameter is closely related to the derivatives of :

or, more generally:

Laguerre's equation can be manipulated into a form that is more useful in applications:

is a solution of

This can be further manipulated. When is an integer, and :

is a solution of

The solution is often expressed in terms of derivatives instead of associated Laguerre polynomials:

This equation arises in quantum mechanics, in the radial part of the solution of the Schrödinger equation for a one-electron atom.

Physicists often use a definition for the Laguerre polynomials that is larger, by a factor of , than the definition used here.

For further details, including the expressions for the first few polynomials, see Laguerre polynomials.

Hermite polynomials

The differential equation is

This is Hermite's equation.

The second form of the differential equation is

The third form is

The recurrence relation is

Rodrigues' formula is

The first few Hermite polynomials are

One can define the associated Hermite functions

Because the multiplier is proportional to the square root of the weight function, these functions are orthogonal over with no weight function.

The third form of the differential equation above, for the associated Hermite functions, is

The associated Hermite functions arise in many areas of mathematics and physics. In quantum mechanics, they are the solutions of Schrödinger's equation for the harmonic oscillator. They are also eigenfunctions (with eigenvalue (in) of the continuous Fourier transform.

Many authors, particularly probabilists, use an alternate definition of the Hermite polynomials, with a weight function of instead of . If the notation He is used for these Hermite polynomials, and H for those above, then these may be characterized by

For further details, see Hermite polynomials.

Characterizations of classical orthogonal polynomials

There are several conditions that single out the classical orthogonal polynomials from the others.

The first condition was found by Sonine (and later by Hahn), who showed that (up to linear changes of variable) the classical orthogonal polynomials are the only ones such that their derivatives are also orthogonal polynomials.

Bochner characterized classical orthogonal polynomials in terms of their recurrence relations.

Tricomi characterized classical orthogonal polynomials as those that have a certain analogue of the Rodrigues formula.

Table of classical orthogonal polynomials

The following table summarises the properties of the classical orthogonal polynomials. [3]

Name, and conventional symbol Chebyshev, Chebyshev
(second kind),
Legendre, Hermite,
Limits of orthogonality [4]
Weight,
StandardizationLead term
Square of norm [5]
Leading term [6]
Second term,
Constant in diff. equation,
Constant in Rodrigues' formula,
Recurrence relation,
Recurrence relation,
Recurrence relation,
Name, and conventional symbol Associated Laguerre, Laguerre,
Limits of orthogonality
Weight,
StandardizationLead term Lead term
Square of norm,
Leading term,
Second term,
Constant in diff. equation,
Constant in Rodrigues' formula,
Recurrence relation,
Recurrence relation,
Recurrence relation,
Name, and conventional symbol Gegenbauer, Jacobi,
Limits of orthogonality
Weight,
Standardization if
Square of norm,
Leading term,
Second term,
Constant in diff. equation,
Constant in Rodrigues' formula,
Recurrence relation,
Recurrence relation,
Recurrence relation,

See also

Notes

  1. See Suetin (2001)
  2. other conventions are also used; see Hermite polynomials.
  3. See Abramowitz & Stegun (1965)
  4. i.e. the edges of the support of the weight W.
  5. The leading coefficient kn of

Related Research Articles

Legendre polynomials

In physical science and mathematics, Legendre polynomials are a system of complete and orthogonal polynomials, with a vast number of mathematical properties, and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications.

In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence.

In mathematics, the Rayleigh quotient for a given complex Hermitian matrix M and nonzero vector x is defined as:

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

In mathematics and its applications, classical Sturm–Liouville theory is the theory of real second-order linear ordinary differential equations of the form:

In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are solutions of Laguerre's equation:

In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation

Geodesics in general relativity Generalization of straight line to a curved space time

In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.

Covariant formulation of classical electromagnetism

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

In mathematics, the Bessel polynomials are an orthogonal sequence of polynomials. There are a number of different but closely related definitions. The definition favored by mathematicians is given by the series

The history of Lorentz transformations comprises the development of linear transformations forming the Lorentz group or Poincaré group preserving the Lorentz interval and the Minkowski inner product .

In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In mathematics, Macdonald polynomialsPλ(x; t,q) are a family of orthogonal symmetric polynomials in several variables, introduced by Macdonald in 1987. He later introduced a non-symmetric generalization in 1995. Macdonald originally associated his polynomials with weights λ of finite root systems and used just one variable t, but later realized that it is more natural to associate them with affine root systems rather than finite root systems, in which case the variable t can be replaced by several different variables t=(t1,...,tk), one for each of the k orbits of roots in the affine root system. The Macdonald polynomials are polynomials in n variables x=(x1,...,xn), where n is the rank of the affine root system. They generalize many other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials and Askey–Wilson polynomials, which in turn include most of the named 1-variable orthogonal polynomials as special cases. Koornwinder polynomials are Macdonald polynomials of certain non-reduced root systems. They have deep relationships with affine Hecke algebras and Hilbert schemes, which were used to prove several conjectures made by Macdonald about them.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In numerical analysis, Gauss–Jacobi quadrature is a method of numerical quadrature based on Gaussian quadrature. Gauss–Jacobi quadrature can be used to approximate integrals of the form

Vibration of plates

The vibration of plates is a special case of the more general problem of mechanical vibrations. The equations governing the motion of plates are simpler than those for general three-dimensional objects because one of the dimensions of a plate is much smaller than the other two. This suggests that a two-dimensional plate theory will give an excellent approximation to the actual three-dimensional motion of a plate-like object, and indeed that is found to be true.

Relativistic angular momentum Angular momentum in special and general relativity

In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.

In mathematics, a linear recurrence with constant coefficients sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence. The polynomial's linearity means that each of its terms has degree 0 or 1. A linear recurrence denotes the evolution of some variable over time, with the current time period or discrete moment in time denoted as t, one period earlier denoted as t − 1, one period later as t + 1, etc.

The Fokas method, or unified transform, is an algorithmic procedure for analysing boundary value problems for linear partial differential equations and for an important class of nonlinear PDEs belonging to the so-called integrable systems. It is named after Greek mathematician Athanassios S. Fokas.

References