Geosynthetic clay liner

Last updated
Different types of fabric used for geosynthetic clay liners. GCLS1.jpg
Different types of fabric used for geosynthetic clay liners.

Geosynthetic clay liners (GCLs) are factory manufactured hydraulic barriers consisting of a layer of bentonite or other very low-permeability material supported by geotextiles and/or geomembranes, mechanically held together by needling, stitching, or chemical adhesives. Due to environmental laws, any seepage from landfills must be collected and properly disposed of, otherwise contamination of the surrounding ground water could cause major environmental and/or ecological problems. The lower the hydraulic conductivity the more effective the GCL will be at retaining seepage inside of the landfill. Bentonite composed predominantly (>70%) of montmorillonite or other expansive clays, are preferred and most commonly used in GCLs. A general GCL construction would consist of two layers of geosynthetics stitched together enclosing a layer of natural or processed sodium bentonite. Typically, woven and/or non-woven textile geosynthetics are used, however polyethylene or geomembrane layers or geogrid geotextiles materials have also been incorporated into the design or in place of a textile layer to increase strength. GCLs are produced by several large companies in North America, Europe, and Asia. The United States Environmental Protection Agency currently regulates landfill construction and design in the US through several legislations. [1]

Contents

History

The origin of GCLs can be traced back to 1962 when Arthur G. Clem filed a patent for preformed moisture impervious panels which combined bentonite clay with corrugated paperboard. [2] In 1982, Arthur J. Clem filed a patent for a what would today be recognized as a GCL which combined bentonite clay, adhesive, and a geotextile. [3] In that same year, Arthur J. Clem established Clem Environmental Corp to put his invention into production. [4] The use of GCLs as a separate category of geosynthetics appears to have been in the United States in 1988 in solid waste containment as a backup to a geomembrane. The product was Claymax which is bentonite mixed with an adhesive so as to bond the clay between two geotextiles; one below (the carrier textile) and the other above (the cover textile) the bentonite in the center. About the same time a different product in Germany, Bentofix, was manufactured by placing bentonite powder between two geotextiles and then needle punching the three-components system together. The needle punching method of manufacture (US patent filed in 1989) gave the resulting composite material shear strength, a critical feature for installation on slopes. [5]

Other names

Other names used for GCLs since their initiation are “clay blankets”, “bentonite blankets”, “bentonite mats”, “prefabricated bentonite clay blankets” and “clay geosynthetic barriers”, the latter currently favored by the International Organization for Standardization (ISO).

Function

The engineering function of a GCL is containment as a hydraulic barrier to water, leachate or other liquids and sometimes gases. As such, they are used as replacements for either compacted clay liners or geomembranes, or they are used in a composite manner to augment the more traditional liner materials. The ultimate in liner security is probably a three component composite geomembrane/geosynthetic clay liner/compacted clay liner which has seen use as a landfill liner on many occasions.

Differences between geosynthetic clay liners (GCL) and compacted clay liners (CCL)
CharacteristicGeosynthetic Clay Liners (GCL)Compacted Clay Liners (CCL)
MaterialBentonite clay, adhesives, geotextiles and/or geomembranesNative soils or blends of soil and bentonite clay
ConstructionFactory manufactured and then installed in the fieldConstruction and/or amended in the field
Thickness~ 6 mm300 to 900 mm
Hydraulic conductivity of clay [6] 10−10 to 10−12 m/s10−9 to 10−10 m/s
Speed and ease of constructionRapid, simple installationSlow, delicate and complicated compaction works
Installed cost$0.05 to $0.10 per m2Highly variable (estimated range $0.07 to $0.30 per m2)
ExperienceConstruction quality assurance and quality control are criticalHighly workforce dependent

Related Research Articles

Clay A finely-grained natural rock or soil containing mainly clay minerals

Clay is a finely-grained natural rock or soil material that combines one or more clay minerals with possible traces of quartz (SiO2), metal oxides (Al2O3, MgO etc.) and organic matter. Geologic clay deposits are mostly composed of phyllosilicate minerals containing variable amounts of water trapped in the mineral structure. Clays are plastic due to particle size and geometry as well as water content, and become hard, brittle and non–plastic upon drying or firing. Depending on the soil's content in which it is found, clay can appear in various colours from white to dull grey or brown to deep orange-red.

Bentonite A clay consisting mostly of montmorillonite

Bentonite is an absorbent aluminium phyllosilicate clay consisting mostly of montmorillonite. One of the first occurrences of bentonite was found in the Cretaceous Benton Shale near Rock River, Wyoming. The Fort Benton Group, along with others in stratigraphic succession, was named after Fort Benton, Montana in the mid-19th century by Fielding Bradford Meek and F. V. Hayden of the U.S. Geological Survey.

Leachate Any liquid that, in the course of passing through matter, extracts soluble or suspended solids

A leachate is any liquid that, in the course of passing through matter, extracts soluble or suspended solids, or any other component of the material through which it has passed.

Geosynthetics synthetic material used to stabilize terrain

Geosynthetics are synthetic products used to stabilize terrain. They are generally polymeric products used to solve civil engineering problems. This includes eight main product categories: geotextiles, geogrids, geonets, geomembranes, geosynthetic clay liners, geofoam, geocells and geocomposites. The polymeric nature of the products makes them suitable for use in the ground where high levels of durability are required. They can also be used in exposed applications. Geosynthetics are available in a wide range of forms and materials. These products have a wide range of applications and are currently used in many civil, geotechnical, transportation, geoenvironmental, hydraulic, and private development applications including roads, airfields, railroads, embankments, retaining structures, reservoirs, canals, dams, erosion control, sediment control, landfill liners, landfill covers, mining, aquaculture and agriculture.

Geotextile textile material used in ground stabilization and construction

Geotextiles are permeable fabrics which, when used in association with soil, have the ability to separate, filter, reinforce, protect, or drain. Typically made from polypropylene or polyester, geotextile fabrics come in three basic forms: woven, needle punched, or heat bonded.

Non-woven fabric is a fabric-like material made from staple fibre (short) and long fibres, bonded together by chemical, mechanical, heat or solvent treatment. The term is used in the textile manufacturing industry to denote fabrics, such as felt, which are neither woven nor knitted. Some non-woven materials lack sufficient strength unless densified or reinforced by a backing. In recent years, non-wovens have become an alternative to polyurethane foam.

Pond liner

A pond liner is an impermeable geomembrane used for retention of liquids, including the lining of reservoirs, retention basins, hazardous and nonhazardous surface impoundments, garden ponds and artificial streams in parks and gardens.

Landscape products refers to a group of building industry products used by garden designers and landscape architects and exhibited at trade fairs devoted to these industries. It includes: walls, fences, paving, gardening tools, outdoor lighting, water features, fountains, garden furniture, garden ornaments, gazebos, garden buildings, pond liners.

Geocomposite

The basic philosophy behind geocomposite materials is to combine the best features of different materials in such a way that specific applications are addressed in the optimal manner and at minimum cost. Thus, the benefit/cost ratio is maximized. Such geocomposites will generally be geosynthetic materials, but not always. In some cases it may be more advantageous to use a nonsynthetic material with a geosynthetic one for optimum performance and/or least cost. As seen in the following, the number of possibilities is huge — the only limits being one's ingenuity and imagination.

A geomembrane is very low permeability synthetic membrane liner or barrier used with any geotechnical engineering related material so as to control fluid migration in a human-made project, structure, or system. Geomembranes are made from relatively thin continuous polymeric sheets, but they can also be made from the impregnation of geotextiles with asphalt, elastomer or polymer sprays, or as multilayered bitumen geocomposites. Continuous polymer sheet geomembranes are, by far, the most common.

Landfill liner

A landfill liner, or composite liner, is intended to be a low permeable barrier, which is laid down under engineered landfill sites. Until it deteriorates, the liner retards migration of leachate, and its toxic constituents, into underlying aquifers or nearby rivers, causing spoliation of the local water.

Cellular confinement confinement system used in construction and geotechnical engineering

Cellular confinement systems (CCS)—also known as geocells—are widely used in construction for erosion control, soil stabilization on flat ground and steep slopes, channel protection, and structural reinforcement for load support and earth retention. Typical cellular confinement systems are geosynthetics made with ultrasonically welded high-density polyethylene (HDPE) strips or novel polymeric alloy (NPA)—and expanded on-site to form a honeycomb-like structure—and filled with sand, soil, rock, gravel or concrete.

A geonet is a geosynthetic material similar in structure to a geogrid, consisting of integrally connected parallel sets of ribs overlying similar sets at various angles for in-plane drainage of liquids or gases. Geonets are often laminated with geotextiles on one or both surfaces and are then referred to as drainage geocomposites. They are competitive with other drainage geocomposites having different core configurations.

In-Situ Capping (ISC) of Subaqueous Waste is a non-removal remediation technique for contaminated sediment that involves leaving the waste in place and isolating it from the environment by placing a layer of soil and/or material over the contaminated waste as to prevent further spread of the contaminant. In-situ capping provides a viable way to remediate an area that is contaminated. It is an option when pump and treat becomes too expensive and the area surrounding the site is a low energy system. The design of the cap and the characterization of the surrounding areas are of equal importance and drive the feasibility of the entire project. Numerous successful cases exist and more will exist in the future as the technology expands and grows more popular. In-situ capping uses techniques developed in chemistry, biology, geotechnical engineering, environmental engineering, and environmental geotechnical engineering.

Final cover is a multilayered system of various materials which are primarily used to reduce the amount of storm water that will enter a landfill after closing. Proper final cover systems will also minimize the surface water on the liner system, resist erosion due to wind or runoff, control the migrations of landfill gases, and improve aesthetics.

Electrical liner integrity surveys, also known as leak location surveys are a post-installation quality control method of detecting leaks in geomembranes. Geomembranes are typically used for large-scale containment of liquid or solid waste. These electrical survey techniques are widely embraced as the state-of-the-art methods of locating leaks in installed geomembranes, which is imperative for the long-term protection of groundwater and the maintenance of water resources. Increasingly specified by environmental regulations, the methods are also applied voluntarily by many site owners as responsible environmental stewards and to minimize future liability.

Canal lining

Canal lining is the process of reducing seepage loss of irrigation water by adding an impermeable layer to the edges of the trench. Seepage can result in losses of 30 to 50 percent of irrigation water from canals, so adding lining can make irrigation systems more efficient. Canal linings are also used to prevent weed growth, which can spread throughout an irrigation system and reduce water flow. Lining a canal can also prevent waterlogging around low-lying areas of the canal.

Ronald Kerry Rowe, FRS, FRSC, FREng is a Canadian civil engineer of Australian birth, one of the pioneers of geosynthetics.

Bioclogging or biological clogging is clogging of pore space in soil by microbial biomass; their body and their byproducts such as extracellular polymeric substance (EPS). The microbial biomass blocks the pathway of water in the pore space, forming a certain thickness of impermeable layer in soil, and it reduces the rate of infiltration of water remarkably.

Jean-Pierre Giroud is a French geotechnical engineer and a pioneer of geosynthetics.

References

  1. EPA (2001). "Geosynthetic Clay Liners Used in Municipal Solid Waste Landfills" (PDF). EPA 530-F-97-002 Fact Sheet Revised December 2001.[ self-published source ]
  2. USpatent 3186896
  3. USpatent 4501788
  4. "James Clem Corp. 1990 "E" Award". Journal of Commerce. Maritime News. 1990.
  5. USpatent 5041330
  6. Shackelford, C.D.; Sevick, G.W.; Eykholt, G.R. (2010). "Hydraulic conductivity of geosynthetic clay liners to tailings impoundment solutions". Geotextiles and Geomembranes. 28 (2): 149–162. doi:10.1016/j.geotexmem.2009.10.005. ISSN   0266-1144.