Coulomb damping

Last updated

Coulomb damping is a type of constant mechanical damping in which the system's kinetic energy is absorbed via sliding friction (the friction generated by the relative motion of two surfaces that press against each other). Coulomb damping is a common damping mechanism that occurs in machinery.

Contents

History

Coulomb damping was so named because Charles-Augustin de Coulomb carried on research in mechanics. He later published a work on friction in 1781 entitled "Theory of Simple Machines" for an Academy of Sciences contest. Coulomb then gained much fame for his work with electricity and magnetism.

Modes of Coulombian friction

Coulomb damping absorbs energy with friction, which converts that kinetic energy into thermal energy, i.e. heat. Coulomb friction considers this under two distinct modes: either static, or kinetic.

Static friction occurs when two objects are not in relative motion, e.g. if both are stationary. The force Fs exerted between the objects does exceed—in magnitude—the product of the normal force N and the coefficient of static frictionμs:

.

Kinetic friction on the other hand, occurs when two objects are undergoing relative motion, as they slide against each other. The force Fk exerted between the moving objects is equal in magnitude to the product of the normal force N and the coefficient of kinetic frictionμk:

.

Regardless of the mode, friction always acts to oppose the objects' relative motion. The normal force is taken perpendicularly to the direction of relative motion; under the influence of gravity, and in the common case of an object supported by a horizontal surface, the normal force is just the weight of the object itself.

As there is no relative motion under static friction, no work is done, and hence no energy can be dissipated. An oscillating system is (by definition) only dampened via kinetic friction.

Illustration

Consider a block of mass that slides over a rough horizontal surface under the restraint of a spring with a spring constant . The spring is attached to the block and mounted to an immobile object on the other end allowing the block to be moved by the force of the spring

,

where is the horizontal displacement of the block from when the spring is unstretched. On a horizontal surface, the normal force is constant and equal to the weight of the block by Newton's third law, i.e.

.

As stated earlier, acts to opposite the motion of the block. Once in motion, the block will oscillate horizontally back and forth around the equilibrium. Newton's second law states that the equation of motion of the block is

.

Above, and respectively denote the velocity and acceleration of the block. Note that the sign of the kinetic friction term depends on —the direction the block is travelling in—but not the speed.

A real-life example of Coulomb damping occurs in large structures with non-welded joints such as airplane wings.

Theory

Coulomb damping dissipates energy constantly because of sliding friction. The magnitude of sliding friction is a constant value; independent of surface area, displacement or position, and velocity. The system undergoing Coulomb damping is periodic or oscillating and restrained by the sliding friction. Essentially, the object in the system is vibrating back and forth around an equilibrium point. A system being acted upon by Coulomb damping is nonlinear because the frictional force always opposes the direction of motion of the system as stated earlier. And because there is friction present, the amplitude of the motion decreases or decays with time. Under the influence of Coulomb damping, the amplitude decays linearly with a slope of where ωn is the natural frequency. The natural frequency is the number of times the system oscillates between a fixed time interval in an undamped system. It should also be known that the frequency and the period of vibration do not change when the damping is constant, as in the case of Coulomb damping. The period τ is the amount of time between the repetition of phases during vibration. As time progresses, the object sliding slows and the distance it travels during these oscillations becomes smaller until it reaches zero, the equilibrium point. The position where the object stops, or its equilibrium position, could potentially be at a completely different position than when initially at rest because the system is nonlinear. Linear systems have only a single equilibrium point.

See also

Related Research Articles

Brownian motion Random motion of particles suspended in a fluid

Brownian motion, or pedesis, is the random motion of particles suspended in a medium.

Force Any action that tends to maintain or alter the motion of an object

In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity, i.e., to accelerate. Force can also be described intuitively as a push or a pull. A force has both magnitude and direction, making it a vector quantity. It is measured in the SI unit of newton (N). Force is represented by the symbol F.

Friction Force resisting sliding motion

Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction:

In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x:

Oscillation Repetitive variation of some measure about a central value

Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value or between two or more different states. Familiar examples of oscillation include a swinging pendulum and alternating current. Oscillations can be used in physics to approximate complex interactions, such as those between atoms.

In mechanics and physics, simple harmonic motion is a special type of periodic motion where the restoring force on the moving object is directly proportional to the magnitude of the object's displacement and acts towards the object's equilibrium position. It results in an oscillation which continues indefinitely, if uninhibited by friction or any other dissipation of energy.

Inclined plane Tilted flat supporting surface

An inclined plane, also known as a ramp, is a flat supporting surface tilted at an angle, with one end higher than the other, used as an aid for raising or lowering a load. The inclined plane is one of the six classical simple machines defined by Renaissance scientists. Inclined planes are used to move heavy loads over vertical obstacles. Examples vary from a ramp used to load goods into a truck, to a person walking up a pedestrian ramp, to an automobile or railroad train climbing a grade.

Spring (device) Elastic object that stores mechanical energy

A spring is an elastic object that stores mechanical energy. Springs are typically made of spring steel. There are many spring designs. In everyday use, the term often refers to coil springs.

Tribology is the science and engineering of interacting surfaces in relative motion. It includes the study and application of the principles of friction, lubrication and wear. Tribology is highly interdisciplinary, drawing on many academic fields, including physics, chemistry, materials science, mathematics, biology and engineering. People who work in the field of tribology are referred to as tribologists.

Torsion spring Type of spring

A torsion spring is a spring that works by twisting its end along its axis; that is, a flexible elastic object that stores mechanical energy when it is twisted. When it is twisted, it exerts a torque in the opposite direction, proportional to the amount (angle) it is twisted. There are various types:

In physics, complex harmonic motion is a complicated realm based on the simple harmonic motion. The word "complex" refers to different situations. Unlike simple harmonic motion, which is regardless of air resistance, friction, etc., complex harmonic motion often has additional forces to dissipate the initial energy and lessen the speed and amplitude of an oscillation until the energy of the system is totally drained and the system comes to rest at its equilibrium point.

Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. In physical systems, damping is produced by processes that dissipate the energy stored in the oscillation. Examples include viscous drag in mechanical systems, resistance in electronic oscillators, and absorption and scattering of light in optical oscillators. Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes. Not to be confused with friction, which is a dissipative force acting on a system. Friction can cause or be a factor of damping.

The principle of detailed balance can be used in kinetic systems which are decomposed into elementary processes. It states that at equilibrium, each elementary process is in equilibrium with its reverse process.

In physics, the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works on Brownian motion. The more general form of the equation is

Rotational–vibrational coupling When the angular frequency of a system matches its natural vibrational frequency

In physics, rotational–vibrational coupling occurs when the rotation frequency of a system is close to or identical to a natural internal vibration frequency. The animation on the right shows ideal motion, with the force exerted by the spring and the distance from the center of rotation increasing together linearly with no friction.

Sliding is a type of frictional motion between two surfaces in contact. This can be contrasted to rolling motion. Both types of motion may occur in bearings.

Gyroscopic exercise tool

A gyroscopic exercise tool is a device used to exercise the wrist as part of physical therapy or in order to build palm, forearm and finger strength. It can also be used as a unique demonstration of some aspects of rotational dynamics. The device consists of a tennis ball-sized plastic or metal shell around a free-spinning mass, which is started with a short rip string. Once the gyroscope inside is going fast enough, a person holding the device can accelerate the spinning mass to high revolution rates by moving the wrist in a circular motion.

Vibration Mechanical oscillations about an equilibrium point

Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. The word comes from Latin vibrationem. The oscillations may be periodic, such as the motion of a pendulum—or random, such as the movement of a tire on a gravel road.

In the context of classical mechanics simulations and physics engines employed within video games, collision response deals with models and algorithms for simulating the changes in the motion of two solid bodies following collision and other forms of contact.

Contact mechanics is the study of the deformation of solids that touch each other at one or more points. This can be divided into compressive and adhesive forces in the direction perpendicular to the interface, and frictional forces in the tangential direction. Frictional contact mechanics is the study of the deformation of bodies in the presence of frictional effects, whereas frictionless contact mechanics assumes the absence of such effects.

References