Polishing and buffing are finishing processes for smoothing a workpiece's surface using an abrasive and a work wheel or a leather strop. Technically, polishing refers to processes that uses an abrasive that is glued to the work wheel, while buffing uses a loose abrasive applied to the work wheel. Polishing is a more aggressive process, while buffing is less harsh, which leads to a smoother, brighter finish. [1] A common misconception is that a polished surface has a mirror-bright finish, however, most mirror-bright finishes are actually buffed.
Polishing is often used to enhance the appearance of an item, prevent contamination of instruments, remove oxidation, create a reflective surface, or prevent corrosion in pipes. In metallography and metallurgy, polishing is used to create a flat, defect-free surface for examination of a metal's microstructure under a microscope. Silicon-based polishing pads or a diamond solution can be used in the polishing process. Polishing stainless steel can also increase its sanitary benefits.
The removal of oxidization (tarnish) from metal objects is accomplished using a metal polish or tarnish remover; this is also called polishing. To prevent further unwanted oxidization, polished metal surfaces may be coated with wax, oil, or lacquer. This is of particular concern for copper alloy products such as brass and bronze. [2]
While used less extensively than traditional mechanical polishing, electropolishing is an alternative form of polishing that uses the principles of electrochemistry to remove microscopic layers of metal from a base surface. [3] This method of polishing can be fine-tuned to give a wide range of finishes, from matte to mirror-bright. Electropolishing also has an advantage over traditional manual polishing in that the finished product will not experience the compression and deformation traditionally associated with the polishing process.
The condition of the material at hand determines what type of abrasive will be applied. The first stage, if the material is unfinished, starts with a rough abrasive (perhaps 60 or 80 grit) and each subsequent stage uses a finer abrasive, such as 120, 180, 220/240, 320, 400 and higher grit abrasives, until the desired finish is achieved. The rough (i.e. large grit) passes remove imperfections within the metal surface like pits, nicks, lines and scratches. The finer abrasives leave progressively finer lines that are not visible to the naked eye. A no. 8 ("mirror") finish requires polishing and buffing compounds, and polishing wheels attached to high speed polishing machines or electric drills. Lubricants like wax and kerosene [4] may be used as lubricating and cooling media during these operations, although some polishing materials are specifically designed to be used "dry." Buffing may be done by hand with a stationary polisher or die grinder, or it may be automated using specialized equipment.
When buffing there are two types of buffing motions: the cut motion and the color motion. The cut motion is designed to give a uniform, smooth, semi-bright surface finish. This is achieved by moving the workpiece against the rotation of the buffing wheel, while using medium to hard pressure. The color motion gives a clean, bright, shiny surface finish. This is achieved by moving the workpiece with the rotation of the buffing wheel, while using medium to light pressure.
When polishing brass (a softer metal) there are often minute marks in the metal caused by impurities. To smooth out the finer marks, the surface is polished with a very fine (600) grit, copper plated, then buffed to a mirror finish with an airflow mop.[ citation needed ]
Polishing operations for items such as chisels, hammers, screwdrivers, wrenches, etc., are given a fine finish but not plated. In order to achieve this finish four operations are required: roughing, dry fining, greasing, and coloring. Note that roughing is usually done on a solid grinding wheel and for an extra fine polish the greasing operation may be broken up into two operations: rough greasing and fine greasing. However, for inexpensive items money is saved by only performing the first two operations. [1]
Polishing knives and cutlery is known as fine glazing or blue glazing. Sand buffing, when used on German silver, white metal, etc., is technically a buffing operation because it uses a loose abrasive, but removes a significant amount of material, like polishing. [1]
White and grey aluminium oxide abrasives are used on high tensile strength metals, such as carbon and alloy steel, tough iron, and nonferrous alloys. Gray silicon carbide abrasives are used on hard and brittle substances, such as grey iron and cemented carbide, and low tensile strength metals, such as brass, aluminium, and copper. [1] Green chromium(III) oxide is the abrasive used in green compounds that are typically used to finish ferrous metals (steels).
Polishing wheels come in a wide variety of types to fulfil a wide range of needs. The most common materials used for polishing wheels are wood, leather, canvas, cotton cloth, plastic, felt, paper, sheepskin, impregnated rubber, canvas composition, and wool; leather and canvas are the most common. Wooden wheels have emery or other abrasives glued onto them and are used to polish flat surfaces and maintain good edges. There are many types of cloth wheels. Cloth wheels that are cemented together are very hard and used for rough work, whereas other cloth wheels that are sewn and glued together are not as aggressive. There are cloth wheels that are not glued or cemented, and instead are sewn and have metal side plates for support. Solid felt wheels are popular for fine finishes. Hard roughing wheels can be made by cementing together strawboard paper disks. Softer paper wheels are made from felt paper. [1] Most wheels are run at approximately 7500 surface feet per minute (SFM), however muslin, felt and leather wheels are usually run at 4000 SFM. [5]
Buffing wheels, also known as mops, are either made from cotton or wool cloth and come bleached or unbleached. [5] Specific types include: sisal, spiral sewn, loose cotton, canton flannel, domet flannel, denim, treated spiral sewn, cushion, treated vented, untreated vented, string buff, finger buff, sisal rope, mushroom, facer, tampered, scrubbing mushroom, hourglass buff, rag, "B", climax, swansdown, airflow, coolair, and bullet.
The following chart will help in deciding which wheels and compounds to use when polishing different materials. This chart is a starting point and experienced polishers may vary the materials used to suit different applications.
Plastics | Silver, gold & thin plates | Nickel & chrome plating | Copper, brass, aluminium, pot metal & soft metals | Steel & iron | Stainless steel | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Buff type | Rough | Initial buff | Final buff | Rough | Initial buff | Final buff | Rough | Initial buff | Final buff | Rough | Initial buff | Final buff | Rough | Initial buff | Final buff | Rough | Initial buff | Final buff |
Sisal | ||||||||||||||||||
Spiral sewn | ||||||||||||||||||
Loose | ||||||||||||||||||
Canton flannel | ||||||||||||||||||
String | ||||||||||||||||||
Compound | ||||||||||||||||||
Black | ||||||||||||||||||
Brown | ||||||||||||||||||
White | ||||||||||||||||||
Blue | ||||||||||||||||||
Green | ||||||||||||||||||
Red |
Polishing may be used to enhance and restore the looks of certain metal parts or object on cars and other vehicles, handrails, cookware, kitchenware, and architectural metal. In other applications such as pharmaceutical, dairy, and specialty plumbing, pipes are buffed to help prevent corrosion and to eliminate locations where bacteria or mold may reside. Buffing is also used to manufacture light reflectors.
An abrasive is a material, often a mineral, that is used to shape or finish a workpiece through rubbing which leads to part of the workpiece being worn away by friction. While finishing a material often means polishing it to gain a smooth, reflective surface, the process can also involve roughening as in satin, matte or beaded finishes. In short, the ceramics which are used to cut, grind and polish other softer materials are known as abrasives.
Sandpaper, also known as glasspaper or as coated abrasive, is a type of material that consists of sheets of paper or cloth with an abrasive substance glued to one face. In the modern manufacture of these products, sand and glass have been replaced by other abrasives such as aluminium oxide or silicon carbide. It is common to use the name of the abrasive when describing the paper, e.g. "aluminium oxide paper", or "silicon carbide paper".
Tumble finishing, also known as tumbling or rumbling, is a technique for smoothing and polishing a rough surface on relatively small parts. In the field of metalworking, a similar process called barreling, or barrel finishing, works upon the same principles.
Brushed or dull polished metal is metal with a unidirectional satin finish. It is produced by polishing the metal with a 120–180 grit belt or wheel then softening with an 80–120 grit greaseless compound or a medium non-woven abrasive belt or pad.
A grinding machine, often shortened to grinder, is a power tool used for grinding. It is a type of machining using an abrasive wheel as the cutting tool. Each grain of abrasive on the wheel's surface cuts a small chip from the workpiece via shear deformation.
Grinding wheels are wheels that contain abrasive compounds for grinding and abrasive machining operations. Such wheels are also used in grinding machines.
Lapping is a machining process in which two surfaces are rubbed together with an abrasive between them, by hand movement or using a machine.
Sharpening stones, or whetstones, are used to sharpen the edges of steel tools such as knives through grinding and honing.
Surface finishing is a broad range of industrial processes that alter the surface of a manufactured item to achieve a certain property. Finishing processes may be employed to: improve appearance, adhesion or wettability, solderability, corrosion resistance, tarnish resistance, chemical resistance, wear resistance, hardness, modify electrical conductivity, remove burrs and other surface flaws, and control the surface friction. In limited cases some of these techniques can be used to restore original dimensions to salvage or repair an item. An unfinished surface is often called mill finish.
Optical manufacturing and testing is the process of manufacturing and testing optical components. It spans a wide range of manufacturing procedures and optical test configurations.
Superfinishing, also known as microfinishing and short-stroke honing, is a metalworking process that improves surface finish and workpiece geometry. This is achieved by removing just the thin amorphous surface layer of fragmented or smeared metal left by the last process with an abrasive stone or tape; this layer is usually about 1 μm in magnitude.
A die grinder or rotary tool is a handheld power tool and multitool used for grinding, sanding, honing, polishing, or machining material. All such tools are conceptually similar, with no bright dividing line between die grinders and rotary tools, although the die grinder name tends to be used for pneumatically driven heavy-duty versions whereas the rotary tool name tends to be used for electric lighter-duty versions. Flexible shaft drive versions also exist.
Sandblasting, sometimes known as abrasive blasting, is the operation of forcibly propelling a stream of abrasive material against a surface under high pressure to smooth a rough surface, roughen a smooth surface, shape a surface or remove surface contaminants. A pressurised fluid, typically compressed air, or a centrifugal wheel is used to propel the blasting material. The first abrasive blasting process was patented by Benjamin Chew Tilghman on 18 October 1870.
Abrasive machining is a machining process where material is removed from a workpiece using a multitude of small abrasive particles. Common examples include grinding, honing, and polishing. Abrasive processes are usually expensive, but capable of tighter tolerances and better surface finish than other machining processes
Grinding is a type of abrasive machining process which uses a grinding wheel as cutting tool.
Honing is an abrasive machining process that produces a precision surface on a metal workpiece by scrubbing an abrasive grinding stone or grinding wheel against it along a controlled path. Honing is primarily used to improve the geometric form of a surface, but can also improve the surface finish.
Mass finishing is a group of manufacturing processes that allow large quantities of parts to be simultaneously finished. The goal of this type of finishing is to burnish, deburr, clean, radius, de-flash, descale, remove rust, polish, brighten, surface harden, prepare parts for further finishing, or break off die cast runners. The two main types of mass finishing are tumble finishing, also known as barrel finishing, and vibratory finishing. Both involve the use of a cyclical action to create grinding contact between surfaces. Sometimes the workpieces are finished against each other; however, usually a finishing medium is used. Mass finishing can be performed dry or wet; wet processes have liquid lubricants, cleaners, or abrasives, while dry processes do not. Cycle times can be as short as 10 minutes for nonferrous workpieces or as long as 2 hours for hardened steel.
Surface grinding is done on flat surfaces to produce a smooth finish.
Flat honing is a metalworking grinding process used to provide high quality flat surfaces. It combines the speed of grinding or honing with the precision of lapping. It has also been known under the terms high speed lapping and high precision grinding.
The conservation and restoration of silver objects is an activity dedicated to the preservation and protection of objects of historical and personal value made from silver. When applied to cultural heritage this activity is generally undertaken by a conservator-restorer.