Cemented carbide

Last updated

Circular saw blade with tungsten-carbide inserts Inserti widia.jpg
Circular saw blade with tungsten-carbide inserts

Cemented carbides are a class of hard materials used extensively for cutting tools, as well as in other industrial applications. It consists of fine particles of carbide cemented into a composite by a binder metal. Cemented carbides commonly use tungsten carbide (WC), titanium carbide (TiC), or tantalum carbide (TaC) as the aggregate. Mentions of "carbide" or "tungsten carbide" in industrial contexts usually refer to these cemented composites.

Contents

Most of the time, carbide cutters will leave a better surface finish on a part and allow for faster machining than high-speed steel or other tool steels. Carbide tools can withstand higher temperatures at the cutter-workpiece interface than standard high-speed steel tools (which is a principal reason enabling the faster machining). Carbide is usually superior for the cutting of tough materials such as carbon steel or stainless steel, as well as in situations where other cutting tools would wear away faster, such as high-quantity production runs. In situations where carbide tooling is not required, high-speed steel is preferred for its lower cost.

Construction

Cemented carbides are metal matrix composites where carbide particles act as the aggregate and a metallic binder serves as the matrix (analogous to concrete, where a gravel aggregate is suspended in a cement matrix). The structure of cemented carbide is conceptually similar to that of a grinding wheel, but the abrasive particles are much smaller; macroscopically, the material of a carbide cutter appears homogeneous.

The process of combining the carbide particles with the binder is referred to as sintering or hot isostatic pressing (HIP). During this process, the material is heated until the binder enters a liquid phase while the carbide grains (which have a much higher melting point) remain solid. At this elevated temperature and pressure, the carbide grains rearrange themselves and compact together, forming a porous matrix. The ductility of the metal binder serves to offset the brittleness of the carbide ceramic, resulting in the composite's high overall toughness and durability. By controlling various parameters, including grain size, cobalt content, dotation (e.g., alloy carbides) and carbon content, a carbide manufacturer can tailor the carbide's performance to specific applications.

The first cemented carbide developed was tungsten carbide (introduced in 1927) which uses tungsten carbide particles held together by a cobalt metal binder. Since then, other cemented carbides have been developed, such as titanium carbide, which is better suited for cutting steel, and tantalum carbide, which is tougher than tungsten carbide. [1]

Physical properties

The coefficient of thermal expansion of cemented tungsten carbide is found to vary with the amount of cobalt used as a metal binder. For 5.9% cobalt samples, a coefficient of 4.4 µm·m−1·K−1 was measured, whereas 13% cobalt samples have a coefficient of around 5.0 µm·m−1·K−1. Both values are only valid from 20 °C (68 °F) to 60 °C (140 °F) due to non-linearity in the thermal expansion process. [2]

Applications

Inserts for metal cutting

Tungsten-carbide inserts Schneidplattchen aus Widia.jpg
Tungsten-carbide inserts

Carbide is more expensive per unit than other typical tool materials, and it is more brittle, making it susceptible to chipping and breaking. To offset these problems, the carbide cutting tip itself is often in the form of a small insert for a larger tipped tool whose shank is made of another material, usually carbon tool steel. This gives the benefit of using carbide at the cutting interface without the high cost and brittleness of making the entire tool out of carbide. Most modern face mills use carbide inserts, as well as many lathe tools and endmills. In recent decades, though, solid-carbide endmills have also become more commonly used, wherever the application's characteristics make the pros (such as shorter cycle times) outweigh the cons (mentioned above). As well, modern turning (lathe) tooling may use a carbide insert on a carbide tool such as a boring bar, which are more rigid than steel insert holders and therefor less prone to vibration, which is of particular importance with boring or threading bars that may need to reach into a part to a depth many times the tool diameter.

Insert coatings

To increase the life of carbide tools, they are sometimes coated. Five such coatings are TiN (titanium nitride), TiC (titanium carbide), Ti(C)N (titanium carbide-nitride), TiAlN (titanium aluminium nitride) and AlTiN (aluminium titanium nitride). (Newer coatings, known as DLC (diamond-like carbon) are beginning to surface, enabling the cutting power of diamond without the unwanted chemical reaction between real diamond and iron[ citation needed ].) Most coatings generally increase a tool's hardness and/or lubricity. A coating allows the cutting edge of a tool to cleanly pass through the material without having the material gall (stick) to it. The coating also helps to decrease the temperature associated with the cutting process and increase the life of the tool. The coating is usually deposited via thermal chemical vapor deposition (CVD) and, for certain applications, with the mechanical physical vapor deposition (PVD) method. However, if the deposition is performed at too high temperature, an eta phase of a Co6W6C tertiary carbide forms at the interface between the carbide and the cobalt phase, which may lead to adhesion failure of the coating.

Inserts for mining tools

Mining and tunneling cutting tools are most often fitted with cemented carbide tips, the so-called "button bits". Artificial diamond can replace the cemented carbide buttons only when conditions are ideal, but as rock drilling is a tough job cemented carbide button bits remain the most used type throughout the world.

Rolls for hot-roll and cold-roll applications

Since the mid-1960s, steel mills around the world have applied cemented carbide to the rolls of their rolling mills for both hot and cold rolling of tubes, bars, and flats.

Other industrial applications

This category contains a countless number of applications, but can be split into three main areas:

Some key areas where cemented carbide components are used:

Spinning blade of a table saw cutting wood at an angle Table saw cutting wood at an angle, by BarelyFitz.jpg
Spinning blade of a table saw cutting wood at an angle

Non-industrial uses

Jewellery

Tungsten carbide has become a popular material in the bridal jewellery industry, due to its extreme hardness and high resistance to scratching. Given its brittleness, it is prone to chip, crack, or shatter in jewellery applications. Once fractured, it cannot be repaired.

History

The initial development of cemented and sintered carbides occurred in Germany in the 1920s. [3] ThyssenKrupp says [in historical present tense], "Sintered tungsten carbide was developed by the 'Osram study society for electrical lighting' to replace diamonds as a material for machining metal. Not having the equipment to exploit this material on an industrial scale, Osram sells the license to Krupp at the end of 1925. In 1926 Krupp brings sintered carbide onto the market under the name WIDIA (acronym for WIe DIAmant = like diamond)." [4] /ˈvdiə/ Machinery's Handbook [3] gives the date of carbide tools' commercial introduction as 1927. Burghardt and Axelrod [5] give the date of their commercial introduction in the United States as 1928. Subsequent development occurred in various countries. [3]

Although the marketing pitch was slightly hyperbolic (carbides being not entirely equal to diamond), carbide tooling offered an improvement in cutting speeds and feeds so remarkable that, like high-speed steel had done two decades earlier, it forced machine tool designers to rethink every aspect of existing designs, with an eye toward yet more rigidity and yet better spindle bearings.

During World War II there was a tungsten shortage in Germany. It was found that tungsten in carbide cuts metal more efficiently than tungsten in high-speed steel, so to economise on the use of tungsten, carbides were used for metal cutting as much as possible.

The Widia  [ de ] name became a genericized trademark in various countries and languages, [4] including English (widia, /ˈwɪdiə/ ), although the genericized sense was never especially widespread in English ("carbide" is the normal generic term). Since 2009, the name has been revived as a brand name by Kennametal, [6] and the brand subsumes numerous popular brands of cutting tools.

Uncoated tips brazed to their shanks were the first form. Clamped indexable inserts and today's wide variety of coatings are advances made in the decades since. [3] With every passing decade, the use of carbide has become less "special" and more ubiquitous.[ original research? ]

Regarding fine-grained hardmetal, an attempt has been made to follow the scientific and technological steps associated with its production; this task is not easy, though, because of the restrictions placed by commercial, and in some cases research, organisations, in not publicising relevant information until long after the date of the initial work. Thus, placing data in an historical, chronological order is somewhat difficult. However, it has been possible to establish that as far back as 1929, approximately 6 years after the first patent was granted, Krupp/Osram workers had identified the positive aspects of tungsten carbide grain refinement. By 1939, they had also discovered the beneficial effects of adding a small amount of vanadium and tantalum carbide. This effectively controlled discontinuous grain growth. [7]

What was considered 'fine' in one decade was considered not so fine in the next. Thus, a grain size in the range 0.5–3.0 μm was considered fine in the early years, but by the 1990s, the era of the nano-crystalline material had arrived, with a grain size of 20–50 nm.

Pobedit

Pobedit (Russian:победи́т) is a sintered carbide alloy of about 90% tungsten carbide as a hard phase, and about 10% cobalt (Co) as a binder phase, with a small amount of additional carbon. It was developed in the Soviet Union in 1929, it is described as a material from which cutting tools are made. Later a number of similar alloys based on tungsten and cobalt were developed, and the name of 'pobedit' was retained for them as well. [8] [9] [10]

Pobedit is usually produced by powder metallurgy in the form of plates of different shapes and sizes. The manufacturing process is as follows: a fine powder of tungsten carbide (or other refractory carbide) and a fine powder of binder material such as cobalt or nickel both get intermixed and then pressed into the appropriate forms. Pressed plates are sintered at a temperature close to the melting point of the binder metal, which yields a very tight and solid substance.

The plates of this superhard composite are applied to manufacturing of metal-cutting and drilling tools; they are usually soldered on the cutting tool tips. Heat post-treatment is not required. The pobedit inserts at the tips of drill bits are still very widespread in Russia.

See also

Related Research Articles

In materials science, a metal matrix composite (MMC) is a composite material with fibers or particles dispersed in a metallic matrix, such as copper, aluminum, or steel. The secondary phase is typically a ceramic or another metal. They are typically classified according to the type of reinforcement: short discontinuous fibers (whiskers), continuous fibers, or particulates. There is some overlap between MMCs and cermets, with the latter typically consisting of less than 20% metal by volume. When at least three materials are present, it is called a hybrid composite. MMCs can have much higher strength-to-weight ratios, stiffness, and ductility than traditional materials, so they are often used in demanding applications. MMCs typically have lower thermal and electrical conductivity and poor resistance to radiation, limiting their use in the very harshest environments.

<span class="mw-page-title-main">Drill bit</span> Type of cutting tool

Drill bits are cutting tools used in a drill to remove material to create holes, almost always of circular cross-section. Drill bits come in many sizes and shapes and can create different kinds of holes in many different materials. In order to create holes drill bits are usually attached to a drill, which powers them to cut through the workpiece, typically by rotation. The drill will grasp the upper end of a bit called the shank in the chuck.

<span class="mw-page-title-main">Powder metallurgy</span> Process of sintering metal powders

Powder metallurgy (PM) is a term covering a wide range of ways in which materials or components are made from metal powders. PM processes can reduce or eliminate the need for subtractive processes in manufacturing, lowering material losses and reducing the cost of the final product.

<span class="mw-page-title-main">Tungsten carbide</span> Hard, dense and stiff chemical compound

Tungsten carbide is a chemical compound containing equal parts of tungsten and carbon atoms. In its most basic form, tungsten carbide is a fine gray powder, but it can be pressed and formed into shapes through sintering for use in industrial machinery, cutting tools, chisels, abrasives, armor-piercing shells and jewelry.

A cermet is a composite material composed of ceramic and metal materials.

<span class="mw-page-title-main">Titanium diboride</span> Chemical compound

Titanium diboride (TiB2) is an extremely hard ceramic which has excellent heat conductivity, oxidation stability and wear resistance. TiB2 is also a reasonable electrical conductor, so it can be used as a cathode material in aluminium smelting and can be shaped by electrical discharge machining.

<span class="mw-page-title-main">Titanium carbide</span> Chemical compound

Titanium carbide, TiC, is an extremely hard refractory ceramic material, similar to tungsten carbide. It has the appearance of black powder with the sodium chloride crystal structure.

<span class="mw-page-title-main">Tool bit</span> Non-rotary cutting tool used in machining

In machining, a tool bit is a non-rotary cutting tool used in metal lathes, shapers, and planers. Such cutters are also often referred to by the set-phrase name of single-point cutting tool, as distinguished from other cutting tools such as a saw or water jet cutter. The cutting edge is ground to suit a particular machining operation and may be resharpened or reshaped as needed. The ground tool bit is held rigidly by a tool holder while it is cutting.

<span class="mw-page-title-main">Grinding wheel</span> Abrasive cutting tool for grinders

Grinding wheels are wheels that contain abrasive compounds for grinding and abrasive machining operations. Such wheels are also used in grinding machines.

<span class="mw-page-title-main">Titanium nitride</span> Ceramic material

Titanium nitride is an extremely hard ceramic material, often used as a physical vapor deposition (PVD) coating on titanium alloys, steel, carbide, and aluminium components to improve the substrate's surface properties.

<span class="mw-page-title-main">End mill</span> Milling cutter designed to cut axially

An end mill is a type of milling cutter, a cutting tool used in industrial milling applications. It is distinguished from the drill bit in its application, geometry, and manufacture. While a drill bit can only cut in the axial direction, most milling bits can cut in the radial direction. Not all mills can cut axially; those designed to cut axially are known as end mills.

<span class="mw-page-title-main">Chromium(II) carbide</span> Chemical compound

Chromium(II) carbide is a ceramic compound that exists in several chemical compositions: Cr3C2, Cr7C3, and Cr23C6. At standard conditions it exists as a gray solid. It is extremely hard and corrosion resistant. It is also a refractory compound, which means that it retains its strength at high temperatures as well. These properties make it useful as an additive to metal alloys. When chromium carbide crystals are integrated into the surface of a metal it improves the wear resistance and corrosion resistance of the metal, and maintains these properties at elevated temperatures. The hardest and most commonly used composition for this purpose is Cr3C2.

Niobium carbide (NbC and Nb2C) is an extremely hard refractory ceramic material, commercially used in tool bits for cutting tools. It is usually processed by sintering and is a frequent additive as grain growth inhibitor in cemented carbides. It has the appearance of a brown-gray metallic powder with purple lustre. It is highly corrosion resistant.

<span class="mw-page-title-main">Diamond tool</span>

A diamond tool is a cutting tool with diamond grains fixed on the functional parts of the tool via a bonding material or another method. As diamond is a superhard material, diamond tools have many advantages as compared with tools made with common abrasives such as corundum and silicon carbide.

<span class="mw-page-title-main">Cold saw</span> Type of circular saw

A cold saw is a circular saw designed to cut metal which uses a toothed blade to transfer the heat generated by cutting to the chips created by the saw blade, allowing both the blade and material being cut to remain cool. This is in contrast to an abrasive saw, which abrades the metal and generates a great deal of heat absorbed by the material being cut and saw blade.

Aluminium magnesium boride or Al3Mg3B56, colloquially known as BAM, is a chemical compound of aluminium, magnesium and boron. Whereas its nominal formula is AlMgB14, the chemical composition is closer to Al0.75Mg0.75B14. It is a ceramic alloy that is highly resistive to wear and has an extremely low coefficient of sliding friction, reaching a record value of 0.04 in unlubricated and 0.02 in lubricated AlMgB14−TiB2 composites. First reported in 1970, BAM has an orthorhombic structure with four icosahedral B12 units per unit cell. This ultrahard material has a coefficient of thermal expansion comparable to that of other widely used materials such as steel and concrete.

<span class="mw-page-title-main">Precision glass moulding</span> Production of optical glass without grinding and polishing

Precision glass moulding is a replicative process that allows the production of high precision optical components from glass without grinding and polishing. The process is also known as ultra-precision glass pressing. It is used to manufacture precision glass lenses for consumer products such as digital cameras, and high-end products like medical systems. The main advantage over mechanical lens production is that complex lens geometries such as aspheres can be produced cost-efficiently.

<span class="mw-page-title-main">Flat honing</span> Metalworking grinding process

Flat honing is a metalworking grinding process used to provide high quality flat surfaces. It combines the speed of grinding or honing with the precision of lapping. It has also been known under the terms high speed lapping and high precision grinding.

<span class="mw-page-title-main">Titanium aluminium nitride</span> Group of metastable hard coatings

Titanium aluminium nitride (TiAlN) or aluminium titanium nitride is a group of metastable hard coatings consisting of nitrogen and the metallic elements aluminium and titanium. This compound as well as similar compounds(such as TiN and TiCN) are most notably used for coating machine tools such and endmills and drills to change their properties, such as increased thermal stability and/or wear resistance. Four important compositions are deposited in industrial scale by physical vapor deposition methods:

Cutting tool materials are materials that are used to make cutting tools which are used in machining but not other cutting tools like knives or punches.

References

  1. Childs, Thomas (2000). "A6.2 Cemented carbides and cermets". Metal Machining: Theory and Applications. Butterworth-Heinemann. pp. 388–389. ISBN   978-0-340-69159-5.
  2. Hidnert, Peter (January 1937). "Thermal Expansion of Cemented Tungsten Carbide". Journal of Research of the National Bureau of Standards . 18 (1): 47–52. doi:10.6028/jres.018.025.
  3. 1 2 3 4 Machinery's Handbook (1996), p. 744.
  4. 1 2 ThyssenKrupp AG, 1926 Krupp markets WIDIA tool metal, Essen, Germany, archived from the original on 25 March 2016, retrieved 2 March 2012.
  5. Burghardt & Axelrod (1954), p. 453.
  6. Widia.com , retrieved 22 October 2010.
  7. Spriggs, Geoffrey E. (1995). "A history of fine grained hardmetal". International Journal of Refractory Metals and Hard Materials . 13 (5): 241–255. doi:10.1016/0263-4368(95)92671-6.
  8. "Победит [Pobedit]". Большая советская энциклопедия [Great Soviet Encyclopedia] (in Russian) (3 ed.). Советская энциклопедия [Soviet Encyclopedia]. 1975. Retrieved 21 June 2020.
  9. Васильев, Н. Н.; Исаакян, О. Н.; Рогинский, Н. О.; Смолянский, Я. Б.; Сокович, В. А.; Хачатуров, Т. С. (1941). "ПОБЕДИТ [Pobedit]". Технический железнодорожный словарь [Technical Railway Dictionary] (in Russian). Трансжелдориздат [Transseldorizdat].
  10. the free dictionary: pobedit

Bibliography

Further reading

Commons-logo.svg Media related to Cemented carbides at Wikimedia Commons