Metal spinning, also known as spin forming or spinning or metal turning most commonly, is a metalworking process by which a disc or tube of metal is rotated at high speed and formed into an axially symmetric part. [1] Spinning can be performed by hand or by a CNC lathe.
The metal spinning trade is one that dates back to antiquity and was a skill used in the Ancient Egyptian era. This is when metal spinning was limited to soft metals spun by human power on primitive lathes. The technique gave significant advances to hydro and steam power in Europe and North America in the 19th century and by the early 20th century the electric motor provided the necessary power and high-speed turning capability. With this advancement, metal spinning craftsmen were now able to spin higher quality pieces made out of brass, copper, aluminum and even stainless and cold-rolled steel.
Metal spinning does not involve removal of material, as in conventional wood or metal turning, but forming (moulding) of sheet metal over an existing shape.
Metal spinning ranges from an artisan's specialty to the most advantageous way to form round metal parts for commercial applications. Artisans use the process to produce architectural detail, specialty lighting, decorative household goods and urns. Commercial applications include rocket nose cones, cookware, gas cylinders, brass instrument bells, and public waste receptacles. Virtually any ductile metal may be formed, from aluminum or stainless steel, to high-strength, high-temperature alloys including INX, Inconel, Grade 50 / Corten, and Hastelloy. The diameter and depth of formed parts are limited only by the size of the equipment available.
The spinning process is fairly simple. A formed block is mounted in the drive section of a lathe. A pre-sized metal disk is then clamped against the block by a pressure pad, which is attached to the tailstock. The block and workpiece are then rotated together at high speeds. A localized force is then applied to the workpiece to cause it to flow over the block. The force is usually applied via various levered tools. Simple workpieces are just removed from the block, but more complex shapes may require a multi-piece block. Extremely complex shapes can be spun over ice forms, which then melt away after spinning. Because the final diameter of the workpiece is always less than the starting diameter, the workpiece must thicken, elongate radially, or buckle circumferentially. [1]
A more involved process, known as reducing or necking, allows a spun workpiece to include reentrant geometries. If surface finish and form are not critical, then the workpiece is "spun on air"; no mandrel is used. If the finish or form are critical then an eccentrically mounted mandrel is used.
"Hot spinning" involves spinning a piece of metal on a lathe while high heat from a torch is applied to the workpiece. Once heated, the metal is then shaped as the tool on the lathe presses against the heated surface forcing it to distort as it spins. Parts can then be shaped or necked down to a smaller diameter with little force exerted, providing a seamless shoulder.
The basic hand metal spinning tool is called a spoon, though many other tools (be they commercially produced, ad hoc, or improvised) can be used to effect varied results. Spinning tools can be made of hardened steel for use with aluminum, or from solid brass for spinning stainless steel or mild steel.
Some metal spinning tools are allowed to spin on bearings during the forming process. This reduces friction and heating of the tool, extending tool life and improving surface finish. Rotating tools may also be coated with a thin film of ceramic to prolong tool life. Rotating tools are commonly used during CNC metal spinning operations.
Commercially, rollers mounted on the end of levers are generally used to form the material down to the mandrel in both hand spinning and CNC metal spinning. Rollers vary in diameter and thickness depending the intended use. The wider the roller the smoother the surface of the spinning; the thinner rollers can be used to form smaller radii.
Cutting of the metal is done by hand held cutters, often foot long hollow bars with tool steel shaped/sharpened files attached. In CNC applications, carbide or tool steel cut-off tools are used.
The mandrel does not incur excessive forces, as found in other metalworking processes, so it can be made from wood, plastic, or ice. For hard materials or high volume use, the mandrel is usually made of metal. [1]
Several operations can be performed in one set-up. Work pieces may have re-entrant profiles and the profile in relation to the center line virtually unrestricted.
Forming parameters and part geometry can be altered quickly, at less cost than other metal forming techniques. Tooling and production costs are also comparatively low. Spin forming, often done by hand, is easily automated and an effective production method for prototypes as well as high quantity production runs. [1]
Other methods of forming round metal parts include hydroforming, stamping, forging and casting. These other methods generally have a higher fixed cost, but a lower variable cost than metal spinning. As machinery for commercial applications has improved, parts are being spun with thicker materials in excess of 1in (25mm) thick steel. Conventional spinning also wastes a considerably smaller amount of material than other methods.
Objects can be built using one piece of material to produce parts without seams. Without seams, a part can withstand higher internal or external pressure exerted on it. For example: scuba tanks and CO2 cartridges.
One disadvantage of metal spinning is that if a crack forms or the object is dented, it must be scrapped. Repairing the object is not cost-effective.
A lathe is a machine tool that rotates a workpiece about an axis of rotation to perform various operations such as cutting, sanding, knurling, drilling, deformation, facing, threading and turning, with tools that are applied to the workpiece to create an object with symmetry about that axis.
Metalworking is the process of shaping and reshaping metals in order to create useful objects, parts, assemblies, and large scale structures. As a term, it covers a wide and diverse range of processes, skills, and tools for producing objects on every scale: from huge ships, buildings, and bridges, down to precise engine parts and delicate jewelry.
Machining is a manufacturing process where a desired shape or part is created using the controlled removal of material, most often metal, from a larger piece of raw material by cutting. Machining is a form of subtractive manufacturing, which utilizes machine tools, in contrast to additive manufacturing, which uses controlled addition of material.
Drilling is a cutting process where a drill bit is spun to cut a hole of circular cross-section in solid materials. The drill bit is usually a rotary cutting tool, often multi-point. The bit is pressed against the work-piece and rotated at rates from hundreds to thousands of revolutions per minute. This forces the cutting edge against the work-piece, cutting off chips (swarf) from the hole as it is drilled.
Plasma cutting is a process that cuts through electrically conductive materials by means of an accelerated jet of hot plasma. Typical materials cut with a plasma torch include steel, stainless steel, aluminum, brass and copper, although other conductive metals may be cut as well. Plasma cutting is often used in fabrication shops, automotive repair and restoration, industrial construction, and salvage and scrapping operations. Due to the high speed and precision cuts combined with low cost, plasma cutting sees widespread use from large-scale industrial computer numerical control (CNC) applications down to small hobbyist shops.
A mandrel, mandril, or arbor is a tapered tool against which material can be forged, pressed, stretched or shaped, or a flanged or tapered or threaded bar that grips a workpiece to be machined in a lathe. A flanged mandrel is a parallel bar of a specific diameter with an integral flange towards one end, and threaded at the opposite end. Work is gripped between the flange and a nut on the thread. A tapered mandrel has a taper of approximately 0.005 inches per foot and is designed to hold work by being driven into an accurate hole on the work, gripping the work by friction. A threaded mandrel may have a male or female thread, and work which has an opposing thread is screwed onto the mandrel.
Swaging is a forging process in which the dimensions of an item are altered using dies into which the item is forced. Swaging is usually a cold working process, but also may be hot worked.
The phrase speeds and feeds or feeds and speeds refers to two separate velocities in machine tool practice, cutting speed and feed rate. They are often considered as a pair because of their combined effect on the cutting process. Each, however, can also be considered and analyzed in its own right.
Sheet metal is metal formed into thin, flat pieces, usually by an industrial process.
In machining, a tool bit is a non-rotary cutting tool used in metal lathes, shapers, and planers. Such cutters are also often referred to by the set-phrase name of single-point cutting tool, as distinguished from other cutting tools such as a saw or water jet cutter. The cutting edge is ground to suit a particular machining operation and may be resharpened or reshaped as needed. The ground tool bit is held rigidly by a tool holder while it is cutting.
A chuck is a specialized type of clamp used to hold an object with radial symmetry, especially a cylinder. In a drill, a mill and a transmission, a chuck holds the rotating tool; in a lathe, it holds the rotating workpiece.
Turning is a machining process in which a cutting tool, typically a non-rotary tool bit, describes a helix toolpath by moving more or less linearly while the workpiece rotates.
A lathe center, often shortened to center, is a tool that has been ground to a point to accurately position a workpiece on an axis. They usually have an included angle of 60°, but in heavy machining situations an angle of 75° is used.
In machining, a metal lathe or metalworking lathe is a large class of lathes designed for precisely machining relatively hard materials. They were originally designed to machine metals; however, with the advent of plastics and other materials, and with their inherent versatility, they are used in a wide range of applications, and a broad range of materials. In machining jargon, where the larger context is already understood, they are usually simply called lathes, or else referred to by more-specific subtype names. These rigid machine tools remove material from a rotating workpiece via the movements of various cutting tools, such as tool bits and drill bits.
Shear forming, also referred as shear spinning, is similar to metal spinning. In shear spinning the area of the final piece is approximately equal to that of the flat sheet metal blank. The wall thickness is maintained by controlling the gap between the roller and the mandrel. In shear forming a reduction of the wall thickness occurs.
Grinding is a type of abrasive machining process which uses a grinding wheel as cutting tool.
Bar stock, also (colloquially) known as blank, slug or billet, is a common form of raw purified metal, used by industry to manufacture metal parts and products. Bar stock is available in a variety of extrusion shapes and lengths. The most common shapes are round, rectangular, square and hexagonal. A bar is characterised by an "enclosed invariant convex cross-section", meaning that pipes, angle stock and objects with varying diameter are not considered bar stock.
Tube bending is any metal forming processes used to permanently form pipes or tubing. Tube bending may be form-bound or use freeform-bending procedures, and it may use heat supported or cold forming procedures.
Arbor milling is a cutting process which removes material via a multi-toothed cutter. An arbor mill is a type of milling machine characterized by its ability to rapidly remove material from a variety of materials. This milling process is not only rapid but also versatile.
A workpiece is a piece, often made of a single material, that is being processed into another desired shape.