Network bridge

Last updated

A high-level overview of network bridging, using the ISO/OSI layers and terminology Network Bridging.png
A high-level overview of network bridging, using the ISO/OSI layers and terminology

A network bridge is a computer networking device that creates a single, aggregate network from multiple communication networks or network segments. This function is called network bridging. [1] Bridging is distinct from routing. Routing allows multiple networks to communicate independently and yet remain separate, whereas bridging connects two separate networks as if they were a single network. [2] In the OSI model, bridging is performed in the data link layer (layer 2). [3] If one or more segments of the bridged network are wireless, the device is known as a wireless bridge.

Contents

The main types of network bridging technologies are simple bridging, multiport bridging, and learning or transparent bridging. [4] [5]

Transparent bridging

Transparent bridging uses a table called the forwarding information base to control the forwarding of frames between network segments. The table starts empty and entries are added as the bridge receives frames. If a destination address entry is not found in the table, the frame is forwarded to all other ports of the bridge, flooding the frame to all segments except the one from which it was received. By means of these flooded frames, a host on the destination network will respond and a forwarding database entry will be created. Both source and destination addresses are used in this process: source addresses are recorded in entries in the table, while destination addresses are looked up in the table and matched to the proper segment to send the frame to. [6] Digital Equipment Corporation (DEC) originally developed the technology in 1983 [7] and introduced the LANBridge 100 that implemented it in 1986. [8]

In the context of a two-port bridge, the forwarding information base can be seen as a filtering database. A bridge reads a frame's destination address and decides to either forward or filter. If the bridge determines that the destination host is on another segment on the network, it forwards the frame to that segment. If the destination address belongs to the same segment as the source address, the bridge filters the frame, preventing it from reaching the other network where it is not needed.

Transparent bridging can also operate over devices with more than two ports. As an example, consider a bridge connected to three hosts, A, B, and C. The bridge has three ports. A is connected to bridge port 1, B is connected to bridge port 2, C is connected to bridge port 3. A sends a frame addressed to B to the bridge. The bridge examines the source address of the frame and creates an address and port number entry for host A in its forwarding table. The bridge examines the destination address of the frame and does not find it in its forwarding table so it floods (broadcasts) it to all other ports: 2 and 3. The frame is received by hosts B and C. Host C examines the destination address and ignores the frame as it does not match with its address. Host B recognizes a destination address match and generates a response to A. On the return path, the bridge adds an address and port number entry for B to its forwarding table. The bridge already has A's address in its forwarding table so it forwards the response only to port 1. Host C or any other hosts on port 3 are not burdened with the response. Two-way communication is now possible between A and B without any further flooding to the network. Now, if A sends a frame addressed to C, the same procedure will be used, but this time the bridge will not create a new forwarding-table entry for A's address/port because it has already done so.

Bridging is called transparent when the frame format and its addressing aren't changed substantially. Non-transparent bridging is required especially when the frame addressing schemes on both sides of a bridge are not compatible with each other, e.g. between ARCNET with local addressing and Ethernet using IEEE MAC addresses, requiring translation. However, most often such incompatible networks are routed in between, not bridged.

Simple bridging

A simple bridge connects two network segments, typically by operating transparently and deciding on a frame-by-frame basis whether or not to forward from one network to the other. A store and forward technique is typically used so, as part of forwarding, the frame integrity is verified on the source network and CSMA/CD delays are accommodated on the destination network. In contrast to repeaters which simply extend the maximum span of a segment, bridges only forward frames that are required to cross the bridge. Additionally, bridges reduce collisions by creating a separate collision domain on either side of the bridge.

Multiport bridging

A multiport bridge connects multiple networks and operates transparently to decide on a frame-by-frame basis whether to forward traffic. Additionally, a multiport bridge must decide where to forward traffic. Like the simple bridge, a multiport bridge typically uses store and forward operation. The multiport bridge function serves as the basis for network switches.

Implementation

The forwarding information base stored in content-addressable memory (CAM) is initially empty. For each received Ethernet frame the switch learns from the frame's source MAC address and adds this together with an interface identifier to the forwarding information base. The switch then forwards the frame to the interface found in the CAM based on the frame's destination MAC address. If the destination address is unknown the switch sends the frame out on all interfaces (except the ingress interface). This behavior is called unicast flooding.

Forwarding

Once a bridge learns the addresses of its connected nodes, it forwards data link layer frames using a layer-2 forwarding method. There are four forwarding methods a bridge can use, of which the second through fourth methods were performance-increasing methods when used on switch products with the same input and output port bandwidths:

  1. Store and forward: the switch buffers and verifies each frame before forwarding it; a frame is received in its entirety before it is forwarded.
  2. Cut through: the switch starts forwarding after the frame's destination address is received. There is no error checking with this method. When the outgoing port is busy at the time, the switch falls back to store-and-forward operation. Also, when the egress port is running at a faster data rate than the ingress port, store-and-forward is usually used.
  3. Fragment free: a method that attempts to retain the benefits of both store and forward and cut through. Fragment free checks the first 64 bytes of the frame, where addressing information is stored. According to Ethernet specifications, collisions should be detected during the first 64 bytes of the frame, so frame transmissions that are aborted because of a collision will not be forwarded. Error checking of the actual data in the packet is left for the end device.
  4. Adaptive switching: a method of automatically selecting between the other three modes. [9] [10]

Shortest Path Bridging

Shortest Path Bridging (SPB), specified in the IEEE 802.1aq standard and based on Dijkstra's algorithm, is a computer networking technology intended to simplify the creation and configuration of networks, while enabling multipath routing. [11] [12] [13] It is a proposed replacement for Spanning Tree Protocol which blocks any redundant paths that could result in a switching loop. SPB allows all paths to be active with multiple equal-cost paths. SPB also increases the number of VLANs allowed on a layer-2 network. [14]

TRILL (Transparent Interconnection of Lots of Links) is the successor to Spanning Tree Protocol, both having been created by the same person, Radia Perlman. The catalyst for TRILL was an event at Beth Israel Deaconess Medical Center which began on 13 November 2002. [15] [16] The concept of Rbridges [17] [sic] was first proposed to the Institute of Electrical and Electronics Engineers in the year 2004, [18] whom in 2005 [19] rejected what came to be known as TRILL, and in the years 2006 through 2012 [20] devised an incompatible variation known as Shortest Path Bridging.

See also

Related Research Articles

<span class="mw-page-title-main">Ethernet</span> Computer networking technology

Ethernet is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.

Intermediate System to Intermediate System is a routing protocol designed to move information efficiently within a computer network, a group of physically connected computers or similar devices. It accomplishes this by determining the best route for data through a packet switching network.

A network switch is networking hardware that connects devices on a computer network by using packet switching to receive and forward data to the destination device.

The Spanning Tree Protocol (STP) is a network protocol that builds a loop-free logical topology for Ethernet networks. The basic function of STP is to prevent bridge loops and the broadcast radiation that results from them. Spanning tree also allows a network design to include backup links providing fault tolerance if an active link fails.

<span class="mw-page-title-main">VLAN</span> Network communications domain that is isolated at the data link layer

A virtual local area network (VLAN) is any broadcast domain that is partitioned and isolated in a computer network at the data link layer. In this context, virtual refers to a physical object recreated and altered by additional logic, within the local area network. Basically, a VLAN behaves like a virtual switch or network link that can share the same physical structure with other VLANs while staying logically separate from them. Between network devices, VLANs work by applying tags to network frames and handling these tags in networking systems –creating the appearance and functionality of network traffic that is physically on a single network but acts as if it were split between separate networks. In this way, VLANs can keep network applications separate despite being connected to the same physical network, and without requiring multiple sets of cabling and networking devices to be deployed.

The data link layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between nodes on a network segment across the physical layer. The data link layer provides the functional and procedural means to transfer data between network entities and may also provide the means to detect and possibly correct errors that can occur in the physical layer.

<span class="mw-page-title-main">Medium access control</span> Service layer in IEEE 802 network standards

In IEEE 802 LAN/MAN standards, the medium access control (MAC), also called media access control, is the layer that controls the hardware responsible for interaction with the wired or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. The LLC provides flow control and multiplexing for the logical link, while the MAC provides flow control and multiplexing for the transmission medium.

A multilayer switch (MLS) is a computer networking device that switches on OSI layer 2 like an ordinary network switch and provides extra functions on higher OSI layers. The MLS was invented by engineers at Digital Equipment Corporation.

<span class="mw-page-title-main">Ethernet hub</span> Device for interconnecting Ethernet devices

An Ethernet hub, active hub, network hub, repeater hub, multiport repeater, or simply hub is a network hardware device for connecting multiple Ethernet devices together and making them act as a single network segment. It has multiple input/output (I/O) ports, in which a signal introduced at the input of any port appears at the output of every port except the original incoming. A hub works at the physical layer. A repeater hub also participates in collision detection, forwarding a jam signal to all ports if it detects a collision. In addition to standard 8P8C ("RJ45") ports, some hubs may also come with a BNC or an Attachment Unit Interface (AUI) connector to allow connection to legacy 10BASE2 or 10BASE5 network segments.

The Multiple Spanning Tree Protocol (MSTP) and algorithm, provides both simple and full connectivity assigned to any given virtual LAN (VLAN) throughout a bridged local area network. MSTP uses bridge protocol data unit (BPDUs) to exchange information between spanning-tree compatible devices, to prevent loops in each Multiple Spanning Tree instance (MSTI) and in the common and internal spanning tree (CIST), by selecting active and blocked paths. This is done as well as in Spanning Tree Protocol (STP) without the need of manually enabling backup links and getting rid of switching loop danger.

<span class="mw-page-title-main">Router on a stick</span> Router that has a single connection to a network

A router on a stick, also known as a one-armed router, is a router that has a single physical or logical connection to a network. It is a method of inter-VLAN routing where one router is connected to a switch via a single cable. The router has physical connections to the broadcast domains where one or more VLANs require the need for routing between them.

Provider Backbone Bridge Traffic Engineering (PBB-TE) is a computer networking technology specified in IEEE 802.1Qay, an amendment to the IEEE 802.1Q standard. PBB-TE adapts Ethernet to carrier class transport networks. It is based on the layered VLAN tags and MAC-in-MAC encapsulation defined in IEEE 802.1ah, but it differs from PBB in eliminating flooding, dynamically created forwarding tables, and spanning tree protocols. Compared to PBB and its predecessors, PBB-TE behaves more predictably and its behavior can be more easily controlled by the network operator, at the expense of requiring up-front connection configuration at each bridge along a forwarding path. PBB-TE Operations, Administration, and Management (OAM) is usually based on IEEE 802.1ag. It was initially based on Nortel's Provider Backbone Transport (PBT).

IEEE 802.1ah is an amendment to the IEEE 802.1Q networking standard which adds support for Provider Backbone Bridges. It includes an architecture and a set of protocols for routing over a provider's network, allowing interconnection of multiple provider bridge networks without losing each customer's individually defined VLANs. It was initially created by Nortel before being submitted to the IEEE 802.1 committee for standardization. The final version was approved by the IEEE in June 2008 and has been integrated into IEEE 802.1Q-2011.

Data center bridging (DCB) is a set of enhancements to the Ethernet local area network communication protocol for use in data center environments, in particular for use with clustering and storage area networks.

IEEE 802.1aq is an amendment to the IEEE 802.1Q networking standard which adds support for Shortest Path Bridging (SPB). This technology is intended to simplify the creation and configuration of Ethernet networks while enabling multipath routing.

IEEE 802.1ad is an amendment to the IEEE 802.1Q-1998 networking standard which adds support for provider bridges. It was incorporated into the base 802.1Q standard in 2011. The technique specified by the standard is known informally as stacked VLANs or QinQ.

TRILL is a networking protocol for optimizing bandwidth and resilience in Ethernet networks, implemented by devices called TRILL switches. TRILL combines techniques from bridging and routing, and is the application of link-state routing to the VLAN-aware customer-bridging problem. Routing bridges (RBridges) are compatible with, and can incrementally replace, previous IEEE 802.1 customer bridges. TRILL Switches are also compatible with IPv4 and IPv6, routers and end systems. They are invisible to current IP routers, and like conventional routers, RBridges terminate the broadcast, unknown-unicast and multicast traffic of DIX Ethernet and the frames of IEEE 802.2 LLC including the bridge protocol data units of the Spanning Tree Protocol.

In computer networking, a unicast flood occurs when a switch receives a unicast frame and the switch does not know that the addressee is on any particular switch port. Since the switch has no information regarding which port, if any, the addressee might be reached through, it forwards the frame through all ports aside from the one through which the frame was received.

Time-Sensitive Networking (TSN) is a set of standards under development by the Time-Sensitive Networking task group of the IEEE 802.1 working group. The TSN task group was formed in November 2012 by renaming the existing Audio Video Bridging Task Group and continuing its work. The name changed as a result of the extension of the working area of the standardization group. The standards define mechanisms for the time-sensitive transmission of data over deterministic Ethernet networks.

<span class="mw-page-title-main">Broadcast, unknown-unicast and multicast traffic</span> Computer networking concept

Broadcast, unknown-unicast and multicast traffic is network traffic transmitted using one of three methods of sending data link layer network traffic to a destination of which the sender does not know the network address. This is achieved by sending the network traffic to multiple destinations on an Ethernet network. As a concept related to computer networking, it includes three types of Ethernet modes: broadcast, unicast and multicast Ethernet. BUM traffic refers to that kind of network traffic that will be forwarded to multiple destinations or that cannot be addressed to the intended destination only.

References

  1. "Traffic regulators: Network interfaces, hubs, switches, bridges, routers, and firewalls" (PDF). Cisco Systems. September 14, 1999. Archived from the original (PDF) on May 31, 2013. Retrieved July 27, 2012.
  2. "What is a Network Switch vs. a Router?". Cisco Systems . Retrieved July 27, 2012.
  3. Decker, Eric B.; Langille, Paul; McCloghrie, Keith; Rijsinghani, Anil (July 14, 1989). "RFC 1286 - Definitions of Managed Objects for Bridges". Tools.ietf.org. Retrieved October 19, 2013.
  4. "Local Area Networks: Internetworking". manipalitdubai.com. Archived from the original (PowerPoint) on May 13, 2014. Retrieved December 2, 2012.
  5. "Bridging Protocols Overview" (PowerPoint). iol.unh.edu. Retrieved December 2, 2012.
  6. "Transparent Bridging". Cisco Systems, Inc. Archived from the original on November 21, 2015. Retrieved June 20, 2010.
  7. US 4597078,"Bridge circuit for interconnecting networks"
  8. "How Engineers at Digital Equipment Corp. Saved Ethernet". IEEE Spectrum. April 7, 2024. Retrieved April 10, 2024.
  9. Dong, Jielin (2007). Network Dictionary. Javvin Technologies Inc. p. 23. ISBN   9781602670006 . Retrieved June 25, 2016.
  10. "Cray makes its Ethernet switches responsive to net conditions". IDG Network World Inc. July 1, 1996. Retrieved June 25, 2016.
  11. "Alcatel-Lucent, Avaya, Huawei, Solana and Spirent Showcase Shortest Path Bridging Interoperability". Huawei. September 7, 2011. Retrieved September 11, 2011.
  12. Luo, Zhen; Suh, Changjin (March 3, 2011). "An improved shortest path bridging protocol for Ethernet backbone network". The International Conference on Information Networking 2011 (ICOIN2011). IEEE Xplore. pp. 148–153. doi:10.1109/ICOIN.2011.5723169. ISBN   978-1-61284-661-3. ISSN   1976-7684. S2CID   11193141.
  13. "Lab Testing Summary Report; Data Center Configuration with SPB" (PDF). Miercom. September 2011. Retrieved December 25, 2011.
  14. Shuang Yu. "IEEE approves new IEEE 802.1aq™ Shortest path bridging". IEEE Standards Association. Archived from the original on May 14, 2013. Retrieved June 19, 2012. Using the IEEE's next-generation VLAN, called a Service Interface Identifier (I-SID), it is capable of supporting 16 million unique services compared to the VLAN limit of four thousand.
  15. "All Systems Down" (PDF). cio.com. IDG Communications, Inc. Archived from the original (PDF) on September 23, 2020. Retrieved January 9, 2022.
  16. "All Systems Down". cio.com. IDG Communications, Inc. Archived from the original on January 9, 2022. Retrieved January 9, 2022.
  17. "Rbridges: Transparent Routing" (PDF). courses.cs.washington.edu. Radia Perlman, Sun Microsystems Laboratories. Archived from the original (PDF) on January 9, 2022. Retrieved January 9, 2022.
  18. "Rbridges: Transparent Routing". researchgate.net. Radia Perlman, Sun Microsystems; Donald Eastlake 3rd, Motorola.
  19. "TRILL Tutorial" (PDF). postel.org. Donald E. Eastlake 3rd, Huawei.
  20. "IEEE 802.1: 802.1aq - Shortest Path Bridging". ieee802.org. Institute of Electrical and Electronics Engineers.