MAC address

Last updated
Label of a UMTS router with MAC addresses for LAN and WLAN modules UMTS Router Surf@home II, o2-0017.jpg
Label of a UMTS router with MAC addresses for LAN and WLAN modules

A MAC address (short for medium access control address or media access control address) is a unique identifier assigned to a network interface controller (NIC) for use as a network address in communications within a network segment. This use is common in most IEEE 802 networking technologies, including Ethernet, Wi-Fi, and Bluetooth. Within the Open Systems Interconnection (OSI) network model, MAC addresses are used in the medium access control protocol sublayer of the data link layer. As typically represented, MAC addresses are recognizable as six groups of two hexadecimal digits, separated by hyphens, colons, or without a separator.

Contents

MAC addresses are primarily assigned by device manufacturers, and are therefore often referred to as the burned-in address, or as an Ethernet hardware address, hardware address, or physical address. Each address can be stored in the interface hardware, such as its read-only memory, or by a firmware mechanism. Many network interfaces, however, support changing their MAC addresses. The address typically includes a manufacturer's organizationally unique identifier (OUI). MAC addresses are formed according to the principles of two numbering spaces based on extended unique identifiers (EUIs) managed by the Institute of Electrical and Electronics Engineers (IEEE): EUI-48—which replaces the obsolete term MAC-48—and EUI-64.

Network nodes with multiple network interfaces, such as routers and multilayer switches, must have a unique MAC address for each network interface in the same network. However, two network interfaces connected to two different networks can share the same MAC address.

Address details

The structure of a 48-bit MAC address. The b0 bit distinguishes multicast and unicast addressing and the b1 bit distinguishes universal and locally administered addressing. MAC-48 Address.svg
The structure of a 48-bit MAC address. The b0 bit distinguishes multicast and unicast addressing and the b1 bit distinguishes universal and locally administered addressing.

The IEEE 802 MAC address originally comes from the Xerox Network Systems Ethernet addressing scheme. [1] This 48-bit address space contains potentially 248 (over 281 trillion) possible MAC addresses. The IEEE manages allocation of MAC addresses, originally known as MAC-48 and which it now refers to as EUI-48 identifiers. The IEEE has a target lifetime of 100 years (until 2080) for applications using EUI-48 space and restricts applications accordingly. The IEEE encourages adoption of the more plentiful EUI-64 for non-Ethernet applications. [2]

The distinctions between EUI-48 and MAC-48 identifiers are in name and application only. MAC-48 was used to address hardware interfaces within existing 802-based networking applications; EUI-48 is now used for 802-based networking and is also used to identify other devices and software, for example Bluetooth. [3] [4] The IEEE now considers MAC-48 to be an obsolete term. [5] EUI-48 is now used in all cases. In addition, the EUI-64 numbering system originally encompassed both MAC-48 and EUI-48 identifiers by a simple translation mechanism. [3] [lower-alpha 1] These translations have since been deprecated. [3]

The Individual Address Block (IAB) is an inactive registry which has been replaced by the MA-S (MAC address block, small), previously named OUI-36, and has no overlaps in addresses with the IAB [6] registry product as of January 1, 2014. The IAB uses an OUI from the MA-L (MAC address block, large) registry, previously called the OUI registry. The term OUI is still in use, [6] but the IEEE Registration Authority does not administer them. An OUI is concatenated with 12 additional IEEE-provided bits (for a total of 36 bits), leaving only 12 bits for the organisation owning the IAB to assign to its (up to 4096) individual devices. An IAB is ideal for organizations requiring not more than 4096 unique 48-bit numbers (EUI-48). Unlike an OUI, which allows the assignee to assign values in various different number spaces (for example, EUI-48, EUI-64, and the various context-dependent identifier number spaces, like for SNAP or EDID), the Individual Address Block could only be used to assign EUI-48 identifiers. All other potential uses based on the OUI from which the IABs are allocated are reserved and remain the property of the IEEE Registration Authority. Between 2007 and September 2012, the OUI value 00:50:C2 was used for IAB assignments. After September 2012, the value 40:D8:55 was used. The owners of an already assigned IAB may continue to use the assignment. [7]

The MA-S registry includes, for each registrant, both a 36-bit unique number used in some standards and a block of EUI-48 and EUI-64 identifiers (while the registrant of an IAB cannot assign an EUI-64). MA-S does not include assignment of an OUI.

Additionally, the MA-M (MAC address block, medium) provides both 220 EUI-48 identifiers and 236 EUI-64 identifiers, the first 28 bits being assigned by IEEE. The first 24 bits of the assigned MA-M block are an OUI assigned to IEEE that will not be reassigned, so the MA-M does not include assignment of an OUI.

Universal vs. local (U/L bit)

Addresses can either be universally administered addresses (UAA) or locally administered addresses (LAA). A universally administered address is uniquely assigned to a device by its manufacturer. The first three octets (in transmission order) identify the organization that issued the identifier and are known as the organizationally unique identifier (OUI). [3] The remainder of the address (three octets for EUI-48 or five for EUI-64) are assigned by that organization in nearly any manner they please, subject to the constraint of uniqueness. A locally administered address is assigned to a device by software or a network administrator, overriding the burned-in address for physical devices.

Locally administered addresses are distinguished from universally administered addresses by setting (assigning the value of 1 to) the second-least-significant bit of the first octet of the address. This bit is also referred to as the U/L bit, short for Universal/Local, which identifies how the address is administered. [8] [ self-published source? ] [9] :20 If the bit is 0, the address is universally administered, which is why this bit is 0 in all UAAs. If it is 1, the address is locally administered. In the example address 06-00-00-00-00-00 the first octet is 06 (hexadecimal), the binary form of which is 00000110, where the second-least-significant bit is 1. Therefore, it is a locally administered address. [10] Even though many hypervisors manage dynamic MAC addresses within their own OUI, often it is useful to create an entire unique MAC within the LAA range. [11]

Universal addresses that are administered locally

In virtualisation, hypervisors such as QEMU and Xen have their own OUIs. Each new virtual machine is started with a MAC address set by assigning the last three bytes to be unique on the local network. While this is local administration of MAC addresses, it is not an LAA in the IEEE sense.

A historical example of this hybrid situation is the DECnet protocol, where the universal MAC address (OUI AA-00-04, Digital Equipment Corporation) is administered locally. The DECnet software assigns the last three bytes for the complete MAC address to be AA-00-04-00-XX-YY where XX-YY reflects the DECnet network address xx.yy of the host. This eliminates the need for DECnet to have an address resolution protocol since the MAC address for any DECnet host can be determined from its DECnet address.

Unicast vs. multicast (I/G bit)

The least significant bit of an address's first octet is referred to as the I/G, or Individual/Group, bit. [8] [ self-published source? ] [9] :20 When this bit is 0 (zero), the frame is meant to reach only one receiving network interface. [12] This type of transmission is called unicast. A unicast frame is transmitted to all nodes within the collision domain. In a modern wired setting (i.e. with switches , not simple hubs ) the collision domain usually is the length of the Ethernet cabling between two network interfaces. In a wireless setting, the collision domain is all receivers that can detect a given wireless signal. If a switch does not know which port leads to a given MAC address, the switch will forward a unicast frame to all of its ports (except the originating port), an action known as unicast flood. [13] [ self-published source? ] Only the node with the matching hardware MAC address will (normally) accept the frame; network interfaces with non-matching MAC-addresses ignore the frame unless they are in promiscuous mode.

If the least significant bit of the first octet is set to 1 (i.e. the second hexadecimal digit is odd) the frame will still be sent only once; however, network interface controllers will choose to accept or ignore it based on criteria other than the matching of their individual MAC addresses: for example, based on a configurable list of accepted multicast MAC addresses. This is called multicast addressing.

The IEEE has built in several special address types to allow more than one network interface card to be addressed at one time:

These are all examples of group addresses, as opposed to individual addresses; the least significant bit of the first octet of a MAC address distinguishes individual addresses from group addresses. That bit is set to 0 in individual addresses and set to 1 in group addresses. Group addresses, like individual addresses, can be universally administered or locally administered.

Ranges of group and locally administered addresses

The U/L and I/G bits are handled independently, and there are instances of all four possibilities. [10] IPv6 multicast uses locally administered, multicast MAC addresses in the range 33-33-XX-XX-XX-XX (with both bits set). [14] :§2.3.1

Given the locations of the U/L and I/G bits, they can be discerned in a single digit in common MAC address notation as shown in the following table:

Universal/local and individual/group bits in MAC addresses
U/L
I/G
Universally administeredLocally administered
Unicast (individual)X0-XX-XX-XX-XX-XX
X4-XX-XX-XX-XX-XX
X8-XX-XX-XX-XX-XX
XC-XX-XX-XX-XX-XX
X2-XX-XX-XX-XX-XX
X6-XX-XX-XX-XX-XX
XA-XX-XX-XX-XX-XX
XE-XX-XX-XX-XX-XX
Multicast (group)X1-XX-XX-XX-XX-XX
X5-XX-XX-XX-XX-XX
X9-XX-XX-XX-XX-XX
XD-XX-XX-XX-XX-XX
X3-XX-XX-XX-XX-XX
X7-XX-XX-XX-XX-XX
XB-XX-XX-XX-XX-XX
XF-XX-XX-XX-XX-XX

IEEE 802c local MAC address usage

IEEE standard 802c [15] further divides the locally administered MAC address block into four quadrants. This additional partitioning is called Structured Local Address Plan (SLAP) and its usage is optional.

SLAP quadrants for unicast local MAC addresses
MAC addressQuadrant nameIdentifierUsage
XA-XX-XX-XX-XX-XXExtended localELIAssigned by IEEE, but uses a unique 3-octet company ID (CID) instead of an OUI.
XE-XX-XX-XX-XX-XXStandard assignedSAIFor use in the forthcoming IEEE P802.1CQ specification, to be assigned dynamically by the Block Address Registration and Claiming (BARC) protocol.
X2-XX-XX-XX-XX-XXAdministratively assignedAAICan be randomly or arbitrarily assigned to devices.
X6-XX-XX-XX-XX-XXReservedReservedReserved for future use, but may be used similarly to AAI until an IEEE specification utilizes this space.

Applications

The following network technologies use the EUI-48 identifier format:

Every device that connects to an IEEE 802 network (such as Ethernet and Wi-Fi) has an EUI-48 address. Common networked consumer devices such as PCs, smartphones and tablet computers use EUI-48 addresses.

EUI-64 identifiers are used in:

Usage in hosts

On broadcast networks, such as Ethernet, the MAC address is expected to uniquely identify each node on that segment and allows frames to be marked for specific hosts. It thus forms the basis of most of the link layer (OSI layer 2) networking upon which upper-layer protocols rely to produce complex, functioning networks.

Many network interfaces support changing their MAC address. On most Unix-like systems, the command utility ifconfig may be used to remove and add link address aliases. For instance, the active ifconfig directive may be used on NetBSD to specify which of the attached addresses to activate. [18] Hence, various configuration scripts and utilities permit the randomization of the MAC address at the time of booting or before establishing a network connection.

Changing MAC addresses is necessary in network virtualization. In MAC spoofing, this is practiced in exploiting security vulnerabilities of a computer system. Some modern operating systems, such as Apple iOS and Android, especially in mobile devices, are designed to randomize the assignment of a MAC address to network interface when scanning for wireless access points to avert tracking systems. [19] [20]

In Internet Protocol (IP) networks, the MAC address of an interface corresponding to an IP address may be queried with the Address Resolution Protocol (ARP) for IPv4 and the Neighbor Discovery Protocol (NDP) for IPv6, relating OSI layer 3 addresses with layer 2 addresses.

Tracking

Randomization

According to Edward Snowden, the US National Security Agency has a system that tracks the movements of mobile devices in a city by monitoring MAC addresses. [21] To avert this practice, Apple has started using random MAC addresses in iOS devices while scanning for networks. [19] Other vendors followed quickly. MAC address randomization during scanning was added in Android starting from version 6.0, [20] Windows 10, [22] and Linux kernel 3.18. [23] The actual implementations of the MAC address randomization technique vary largely in different devices. [24] Moreover, various flaws and shortcomings in these implementations may allow an attacker to track a device even if its MAC address is changed, for instance its probe requests' other elements, [25] [26] or their timing. [27] [24] If random MAC addresses are not used, researchers have confirmed that it is possible to link a real identity to a particular wireless MAC address. [28]

Randomized MAC addresses can be identified by the "locally administered" bit described above. [29]

Other information leakage

Using wireless access points in SSID-hidden mode (network cloaking), a mobile wireless device may not only disclose its own MAC address when traveling, but even the MAC addresses associated to SSIDs the device has already connected to, if they are configured to send these as part of probe request packets. Alternative modes to prevent this include configuring access points to be either in beacon-broadcasting mode or probe-response with SSID mode. In these modes, probe requests may be unnecessary or sent in broadcast mode without disclosing the identity of previously known networks. [30]

Anonymization

Notational conventions

The standard (IEEE 802) format for printing EUI-48 addresses in human-friendly form is six groups of two hexadecimal digits, separated by hyphens (-) in transmission order (e.g. 01-23-45-67-89-AB). This form is also commonly used for EUI-64 (e.g. 01-23-45-67-89-AB-CD-EF). [3] Other conventions include six groups of two hexadecimal digits separated by colons (:) (e.g. 01:23:45:67:89:AB), and three groups of four hexadecimal digits separated by dots (.) (e.g. 0123.4567.89AB); again in transmission order. [31]

Bit-reversed notation

The standard notation, also called canonical format, for MAC addresses is written in transmission order with the least significant bit of each byte transmitted first, and is used in the output of the ifconfig , ip address , and ipconfig commands, for example.

However, since IEEE 802.3 (Ethernet) and IEEE 802.4 (Token Bus) send the bytes (octets) over the wire, left-to-right, with the least significant bit in each byte first, while IEEE 802.5 (Token Ring) and IEEE 802.6 (FDDI) send the bytes over the wire with the most significant bit first, confusion may arise when an address in the latter scenario is represented with bits reversed from the canonical representation. For example, an address in canonical form 12-34-56-78-9A-BC would be transmitted over the wire as bits 01001000 00101100 01101010 00011110 01011001 00111101 in the standard transmission order (least significant bit first). But for Token Ring networks, it would be transmitted as bits 00010010 00110100 01010110 01111000 10011010 10111100 in most-significant-bit first order. The latter might be incorrectly displayed as 48-2C-6A-1E-59-3D. This is referred to as bit-reversed order, non-canonical form, MSB format, IBM format, or Token Ring format. [32]

See also

Notes

  1. To convert a MAC-48 into an EUI-64, copy the OUI, append the two octets FF-FF and then copy the organization-specified extension identifier. To convert an EUI-48 into an EUI-64, the same process is used, but the sequence inserted is FF-FE. [3] In both cases, the process could be trivially reversed when necessary. Organizations issuing EUI-64s were cautioned against issuing identifiers that could be confused with these forms.
  2. With local identifiers indicated with a zero bit, locally assigned EUI-64 begin with leading zeroes and it is easier for administrators to type locally assigned IPv6 addresses based on the modified EUI-64

Related Research Articles

<span class="mw-page-title-main">Ethernet</span> Computer networking technology

Ethernet is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.

Internetwork Packet Exchange (IPX) is the network-layer protocol in the IPX/SPX protocol suite. IPX is derived from Xerox Network Systems' IDP. It also has the ability to act as a transport layer protocol.

IEEE 802.2 is the original name of the ISO/IEC 8802-2 standard which defines logical link control (LLC) as the upper portion of the data link layer of the OSI Model. The original standard developed by the Institute of Electrical and Electronics Engineers (IEEE) in collaboration with the American National Standards Institute (ANSI) was adopted by the International Organization for Standardization (ISO) in 1998, but it remains an integral part of the family of IEEE 802 standards for local and metropolitan networks.

A multicast address is a logical identifier for a group of hosts in a computer network that are available to process datagrams or frames intended to be multicast for a designated network service. Multicast addressing can be used in the link layer, such as Ethernet multicast, and at the internet layer for Internet Protocol Version 4 (IPv4) or Version 6 (IPv6) multicast.

The Address Resolution Protocol (ARP) is a communication protocol used for discovering the link layer address, such as a MAC address, associated with a given internet layer address, typically an IPv4 address. This mapping is a critical function in the Internet protocol suite. ARP was defined in 1982 by RFC 826, which is Internet Standard STD 37.

<span class="mw-page-title-main">Subnet</span> Logical subdivision of an IP network

A subnetwork, or subnet, is a logical subdivision of an IP network. The practice of dividing a network into two or more networks is called subnetting.

The data link layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between nodes on a network segment across the physical layer. The data link layer provides the functional and procedural means to transfer data between network entities and may also provide the means to detect and possibly correct errors that can occur in the physical layer.

<span class="mw-page-title-main">Universally unique identifier</span> Label used for information in computer systems

A Universally Unique Identifier (UUID) is a 128-bit label used for information in computer systems. The term Globally Unique Identifier (GUID) is also used, mostly in Microsoft systems.

<span class="mw-page-title-main">Medium access control</span> Service layer in IEEE 802 network standards

In IEEE 802 LAN/MAN standards, the medium access control (MAC), also called media access control, is the layer that controls the hardware responsible for interaction with the wired or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. The LLC provides flow control and multiplexing for the logical link, while the MAC provides flow control and multiplexing for the transmission medium.

<span class="mw-page-title-main">Service set (802.11 network)</span> Group of all devices on the same wireless network

In IEEE 802.11 wireless local area networking standards, a service set is a group of wireless network devices which share a service set identifier (SSID)—typically the natural language label that users see as a network name. A service set forms a logical network of nodes operating with shared link-layer networking parameters; they form one logical network segment.

An organizationally unique identifier (OUI) is a 24-bit number that uniquely identifies a vendor, manufacturer, or other organization.

A World Wide Name (WWN) or World Wide Identifier (WWID) is a unique identifier used in storage technologies including Fibre Channel, Parallel ATA, Serial ATA, SCSI and Serial Attached SCSI (SAS).

IEEE 802.1Q, often referred to as Dot1q, is the networking standard that supports virtual local area networking (VLANs) on an IEEE 802.3 Ethernet network. The standard defines a system of VLAN tagging for Ethernet frames and the accompanying procedures to be used by bridges and switches in handling such frames. The standard also contains provisions for a quality-of-service prioritization scheme commonly known as IEEE 802.1p and defines the Generic Attribute Registration Protocol.

The Subnetwork Access Protocol (SNAP) is a mechanism for multiplexing, on networks using IEEE 802.2 LLC, more protocols than can be distinguished by the eight-bit 802.2 Service Access Point (SAP) fields. SNAP supports identifying protocols by EtherType field values; it also supports vendor-private protocol identifier spaces. It is used with IEEE 802.3, IEEE 802.4, IEEE 802.5, IEEE 802.11 and other IEEE 802 physical network layers, as well as with non-IEEE 802 physical network layers such as FDDI that use 802.2 LLC.

The Link Layer Discovery Protocol (LLDP) is a vendor-neutral link layer protocol used by network devices for advertising their identity, capabilities, and neighbors on a local area network based on IEEE 802 technology, principally wired Ethernet. The protocol is formally referred to by the IEEE as Station and Media Access Control Connectivity Discovery specified in IEEE 802.1AB with additional support in IEEE 802.3 section 6 clause 79.

6LoWPAN was a working group of the Internet Engineering Task Force (IETF). It was created with the intention of applying the Internet Protocol (IP) even to the smallest devices, enabling low-power devices with limited processing capabilities to participate in the Internet of Things.

In computer networking, an Ethernet frame is a data link layer protocol data unit and uses the underlying Ethernet physical layer transport mechanisms. In other words, a data unit on an Ethernet link transports an Ethernet frame as its payload.

IEEE 802.1aq is an amendment to the IEEE 802.1Q networking standard which adds support for Shortest Path Bridging (SPB). This technology is intended to simplify the creation and configuration of Ethernet networks while enabling multipath routing.

<span class="mw-page-title-main">IPv6 address</span> Label to identify a network interface of a computer or other network node

An Internet Protocol version 6 address is a numeric label that is used to identify and locate a network interface of a computer or a network node participating in a computer network using IPv6. IP addresses are included in the packet header to indicate the source and the destination of each packet. The IP address of the destination is used to make decisions about routing IP packets to other networks.

TRILL is a networking protocol for optimizing bandwidth and resilience in Ethernet networks, implemented by devices called TRILL switches. TRILL combines techniques from bridging and routing, and is the application of link-state routing to the VLAN-aware customer-bridging problem. Routing bridges (RBridges) are compatible with, and can incrementally replace, previous IEEE 802.1 customer bridges. TRILL Switches are also compatible with IPv4 and IPv6, routers and end systems. They are invisible to current IP routers, and like conventional routers, RBridges terminate the broadcast, unknown-unicast and multicast traffic of DIX Ethernet and the frames of IEEE 802.2 LLC including the bridge protocol data units of the Spanning Tree Protocol.

References

  1. IEEE Std 802-2001 (PDF). The Institute of Electrical and Electronics Engineers, Inc. (IEEE). 2002-02-07. p. 19. ISBN   978-0-7381-2941-9. Archived from the original (PDF) on April 29, 2003. Retrieved 2011-09-08. The universal administration of LAN MAC addresses began with the Xerox Corporation administering Block Identifiers (Block IDs) for Ethernet addresses.
  2. "Use of EUI-64 for New Designs". www.ieee802.org. Retrieved 2024-07-07.
  3. 1 2 3 4 5 6 "Guidelines for Use of Extended Unique Identifier (EUI), Organizationally Unique Identifier (OUI), and Company ID (CID)" (PDF). IEEE Standards Association. IEEE. Retrieved 5 August 2018.
  4. "IEEE-SA - IEEE Registration Authority". IEEE . Retrieved 2018-09-20.
  5. "MAC Address Block Small (MA-S)". Archived from the original on 2021-04-18. Retrieved 2019-02-24.
  6. 1 2 "IEEE-SA - IEEE Registration Authority". IEEE . Retrieved 2018-11-27.
  7. "IEEE-SA - IEEE Registration Authority". IEEE . Retrieved 2018-09-20.
  8. 1 2 "Ethernet frame IG/LG bit explanation - Wireshark". networkengineering.stackexchange.com. Retrieved 2021-01-05.
  9. 1 2 R. Hinden; S. Deering (February 2006). IP Version 6 Addressing Architecture. Network Working Group. doi: 10.17487/RFC4291 . RFC 4291.Draft Standard. Obsoletes RFC  3513. Updated by RFC  5952, 6052, 7136, 7346, 7371 and 8064.
  10. 1 2 "Standard Group MAC Addresses: A Tutorial Guide" (PDF). IEEE-SA. Retrieved 2018-09-20.
  11. "Generating a New Unique MAC Address". RedHat. Retrieved 2020-06-15.
  12. "Guidelines for Fibre Channel Use of the Organizationally Unique Identifier (OUI)" (PDF). IEEE-SA. Retrieved 2018-10-11.
  13. "Overview of Layer 2 Switched Networks and Communication | Getting Started with LANs | Cisco Support Community | 5896 | 68421". supportforums.cisco.com. 2011-07-23. Retrieved 2016-05-17.
  14. 1 2 D. Eastlake III; J. Abley (October 2013). IANA Considerations and IETF Protocol and Documentation Usage for IEEE 802 Parameters. Internet Engineering Task Force (IETF). doi: 10.17487/RFC7042 . ISSN   2070-1721. BCP 141. RFC 7042.Best Common Practice. Obsoletes RFC  5342. Updates RFC  2153.
  15. "Local MAC Addresses in the Overview and Architecture based on IEEE Std 802c" (PDF). IEEE-SA. Retrieved 2023-10-04.
  16. S. Thomson; T. Narten; T. Jinmei (September 2007). IPv6 Stateless Address Autoconfiguration. Network Working Group. doi: 10.17487/RFC4862 . RFC 4862.Draft Standard. Obsoletes RFC  2462. Updated by RFC  7527.
  17. IEEE P11073-20601 Health informatics—Personal health device communication Part 20601: Application profile—Optimized Exchange Protocol
  18. "ifconfig(8) manual page". Archived from the original on 14 January 2020. Retrieved 16 October 2016.
  19. 1 2 Mamiit, Aaron (2014-06-12). "Apple Implements Random MAC Address on iOS 8. Goodbye, Marketers". Tech Times. Retrieved 2014-12-01.
  20. 1 2 "Android 6.0 Changes". Android developers. Retrieved 2018-08-22.
  21. Bamford, James (2014-08-13). "The Most Wanted Man in the World". Wired. p. 4. Retrieved 2014-12-01.
  22. Winkey Wang. "Wireless networking in Windows 10".
  23. Emmanuel Grumbach. "iwlwifi: mvm: support random MAC address for scanning". Linux commit effd05ac479b. Retrieved 2018-08-22.
  24. 1 2 Célestin Matte (December 2017). Wi-Fi Tracking: Fingerprinting Attacks and Counter-Measures. 2017 (Theses). Université de Lyon. Retrieved 2018-08-22.
  25. Vanhoef, Mathy; Matte, Célestin; Cunche, Mathieu; Cardoso, Leonardo; Piessens, Frank (10 June 2016). "Why MAC Address Randomization is not Enough: An Analysis of Wi-Fi Network Discovery Mechanisms". Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. pp. 413–424. doi:10.1145/2897845.2897883. ISBN   978-1-4503-4233-9. S2CID   12706713 . Retrieved 3 May 2022.
  26. Martin Jeremy and Mayberry Travis and Donahue Collin and Foppe Lucas and Brown Lamont and Riggins Chadwick and Rye Erik C and Brown Dane. "A study of MAC address randomization in mobile devices and when it fails" (PDF). 2017. Archived from the original (PDF) on 2018-08-22. Retrieved 2018-08-22.
  27. Matte Célestin and Cunche Mathieu and Rousseau Franck and Vanhoef Mathy (2016-07-18). "Defeating MAC address randomization through timing attacks". Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. pp. 15–20. doi:10.1145/2939918.2939930. ISBN   9781450342704. S2CID   2625583 . Retrieved 2018-08-22.
  28. Cunche, Mathieu (2014). "I know your MAC Address: Targeted tracking of individual using Wi-Fi". Journal of Computer Virology and Hacking Techniques. 10 (4): 219–227. doi:10.1007/s11416-013-0196-1. Archived from the original on 2016-03-04. Retrieved 19 December 2014. Alt URL
  29. Nayak, Seema (14 March 2022). "Randomized and Changing MAC (RCM)". Cisco Blogs. To improve end-user privacy, various operating system vendors (Apple iOS 14, Android 10 and Windows 10) are enabling the use of the locally administered mac address (LAA), also referred to as the random mac address for WIFI operation. When wireless endpoint is associated with random mac address, the MAC address of the endpoint changes over time.
  30. "Hidden network no beacons". security.stackexchange.com. Retrieved 16 October 2016.
  31. "Agentless Host Configuration Scenario". Configuration Guide for Cisco Secure ACS 4.2. Cisco. February 2008. Archived from the original on 2016-08-02. Retrieved 2015-09-19. You can enter the MAC address in the following formats for representing MAC-48 addresses in human-readable form: six groups of two hexadecimal digits, separated by hyphens (-) in transmission order,[...]six groups of two separated by colons (:),[...]three groups of four hexadecimal digits separated by dots (.)...
  32. T. Narten; C. Burton (December 1998). A Caution On The Canonical Ordering Of Link-Layer Addresses. Network Working Group. doi: 10.17487/RFC2469 . RFC 2469.Informational.