Promiscuous mode

Last updated

In computer networking, promiscuous mode is a mode for a wired network interface controller (NIC) or wireless network interface controller (WNIC) that causes the controller to pass all traffic it receives to the central processing unit (CPU) rather than passing only the frames that the controller is specifically programmed to receive. This mode is normally used for packet sniffing that takes place on a router or on a computer connected to a wired network or one being part of a wireless LAN. Interfaces are placed into promiscuous mode by software bridges often used with hardware virtualization.

Contents

In IEEE 802 networks such as Ethernet or IEEE 802.11, each frame includes a destination MAC address. In non-promiscuous mode, when a NIC receives a frame, it drops it unless the frame is addressed to that NIC's MAC address or is a broadcast or multicast addressed frame. In promiscuous mode, however, the NIC allows all frames through, thus allowing the computer to read frames intended for other machines or network devices.

Many operating systems require superuser privileges to enable promiscuous mode. A non-routing node in promiscuous mode can generally only monitor traffic to and from other nodes within the same collision domain (for Ethernet and IEEE 802.11) or ring (for Token Ring). Computers attached to the same Ethernet hub satisfy this requirement, which is why network switches are used to combat malicious use of promiscuous mode. A router may monitor all traffic that it routes.

Promiscuous mode is often used to diagnose network connectivity issues. There are programs that make use of this feature to show the user all the data being transferred over the network. Some protocols like FTP and Telnet transfer data and passwords in clear text, without encryption, and network scanners can see this data. Therefore, computer users are encouraged to stay away from insecure protocols like telnet and use more secure ones such as SSH.

Detection

As promiscuous mode can be used in a malicious way to capture private data in transit on a network, computer security professionals might be interested in detecting network devices that are in promiscuous mode. In promiscuous mode, some software might send responses to frames even though they were addressed to another machine. However, experienced sniffers can prevent this (e.g., using carefully designed firewall settings). An example is sending a ping (ICMP echo request) with the wrong MAC address but the right IP address. If an adapter is operating in normal mode, it will drop this frame, and the IP stack never sees or responds to it. If the adapter is in promiscuous mode, the frame will be passed on, and the IP stack on the machine (to which a MAC address has no meaning) will respond as it would to any other ping. [1] The sniffer can prevent this by configuring a firewall to block ICMP traffic.

Some applications that use promiscuous mode

The following applications and applications classes use promiscuous mode.

Packet Analyzer
Virtual machine
Containers
Cryptanalysis
Network monitoring
Gaming

See also

Related Research Articles

<span class="mw-page-title-main">Ethernet</span> Computer networking technology

Ethernet is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.

IEEE 802.2 is the original name of the ISO/IEC 8802-2 standard which defines logical link control (LLC) as the upper portion of the data link layer of the OSI Model. The original standard developed by the Institute of Electrical and Electronics Engineers (IEEE) in collaboration with the American National Standards Institute (ANSI) was adopted by the International Organization for Standardization (ISO) in 1998, but it remains an integral part of the family of IEEE 802 standards for local and metropolitan networks.

A MAC address is a unique identifier assigned to a network interface controller (NIC) for use as a network address in communications within a network segment. This use is common in most IEEE 802 networking technologies, including Ethernet, Wi-Fi, and Bluetooth. Within the Open Systems Interconnection (OSI) network model, MAC addresses are used in the medium access control protocol sublayer of the data link layer. As typically represented, MAC addresses are recognizable as six groups of two hexadecimal digits, separated by hyphens, colons, or without a separator.

In computer networking, the maximum transmission unit (MTU) is the size of the largest protocol data unit (PDU) that can be communicated in a single network layer transaction. The MTU relates to, but is not identical to the maximum frame size that can be transported on the data link layer, e.g., Ethernet frame.

A network switch is networking hardware that connects devices on a computer network by using packet switching to receive and forward data to the destination device.

<span class="mw-page-title-main">Packet analyzer</span> Computer network equipment or software that analyzes network traffic

A packet analyzer, also known as packet sniffer, protocol analyzer, or network analyzer, is a computer program or computer hardware such as a packet capture appliance that can analyze and log traffic that passes over a computer network or part of a network. Packet capture is the process of intercepting and logging traffic. As data streams flow across the network, the analyzer captures each packet and, if needed, decodes the packet's raw data, showing the values of various fields in the packet, and analyzes its content according to the appropriate RFC or other specifications.

<span class="mw-page-title-main">Medium access control</span> Service layer in IEEE 802 network standards

In IEEE 802 LAN/MAN standards, the medium access control (MAC), also called media access control, is the layer that controls the hardware responsible for interaction with the wired or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. The LLC provides flow control and multiplexing for the logical link, while the MAC provides flow control and multiplexing for the transmission medium.

<span class="mw-page-title-main">Network interface controller</span> Hardware component that connects a computer to a network

A network interface controller is a computer hardware component that connects a computer to a computer network.

<span class="mw-page-title-main">Link aggregation</span> Using multiple network connections in parallel to increase capacity and reliability

In computer networking, link aggregation is the combining of multiple network connections in parallel by any of several methods. Link aggregation increases total throughput beyond what a single connection could sustain, and provides redundancy where all but one of the physical links may fail without losing connectivity. A link aggregation group (LAG) is the combined collection of physical ports.

<span class="mw-page-title-main">Ethernet flow control</span> Technique to suspend transmission to avoid congestion

Ethernet flow control is a mechanism for temporarily stopping the transmission of data on Ethernet family computer networks. The goal of this mechanism is to avoid packet loss in the presence of network congestion.

<span class="mw-page-title-main">Network bridge</span> Device that creates a larger computer network from two smaller networks

A network bridge is a computer networking device that creates a single, aggregate network from multiple communication networks or network segments. This function is called network bridging. Bridging is distinct from routing. Routing allows multiple networks to communicate independently and yet remain separate, whereas bridging connects two separate networks as if they were a single network. In the OSI model, bridging is performed in the data link layer. If one or more segments of the bridged network are wireless, the device is known as a wireless bridge.

Monitor mode, or RFMON mode, allows a computer with a wireless network interface controller (WNIC) to monitor all traffic received on a wireless channel. Unlike promiscuous mode, which is also used for packet sniffing, monitor mode allows packets to be captured without having to associate with an access point or ad hoc network first. Monitor mode only applies to wireless networks, while promiscuous mode can be used on both wired and wireless networks. Monitor mode is one of the eight modes that 802.11 wireless adapter can operate in: Master, Managed, Ad hoc, Repeater, Mesh, Wi-Fi Direct, TDLS and Monitor mode.

<span class="mw-page-title-main">Computer network</span> Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

An ICMP tunnel establishes a covert connection between two remote computers, using ICMP echo requests and reply packets. An example of this technique is tunneling complete TCP traffic over ping requests and replies.

<span class="mw-page-title-main">Wireshark</span> Network traffic analyzer

Wireshark is a free and open-source packet analyzer. It is used for network troubleshooting, analysis, software and communications protocol development, and education. Originally named Ethereal, the project was renamed Wireshark in May 2006 due to trademark issues.

<span class="mw-page-title-main">Token Ring</span> Technology for computer networking

Token Ring is a physical and data link layer computer networking technology used to build local area networks. It was introduced by IBM in 1984, and standardized in 1989 as IEEE 802.5. It uses a special three-byte frame called a token that is passed around a logical ring of workstations or servers. This token passing is a channel access method providing fair access for all stations, and eliminating the collisions of contention-based access methods.

In computer networking, an Ethernet frame is a data link layer protocol data unit and uses the underlying Ethernet physical layer transport mechanisms. In other words, a data unit on an Ethernet link transports an Ethernet frame as its payload.

ngrep Packet analyser

ngrep is a network packet analyzer written by Jordan Ritter. It has a command-line interface, and relies upon the pcap library and the GNU regex library.

<span class="mw-page-title-main">Sniffer (protocol analyzer)</span> Network packet and protocol analyzer

The Sniffer was a computer network packet and protocol analyzer developed and first sold in 1986 by Network General Corporation of Mountain View, CA. By 1994 the Sniffer had become the market leader in high-end protocol analyzers. According to SEC 10-K filings and corporate annual reports, between 1986 and March 1997 about $933M worth of Sniffers and related products and services had been sold as tools for network managers and developers.

References

  1. Sniffers: Basics and Detection (PDF), retrieved 2017-10-13