Switching loop

Last updated

A switching loop or bridge loop occurs in computer networks when there is more than one layer 2 path between two endpoints (e.g. multiple connections between two network switches or two ports on the same switch connected to each other). The loop creates broadcast storms as broadcasts and multicasts are forwarded by switches out every port, the switch or switches will repeatedly rebroadcast the broadcast messages flooding the network. [1] Since the layer-2 header does not include a time to live (TTL) field, if a frame is sent into a looped topology, it can loop forever.

Contents

A physical topology that contains switching or bridge loops is attractive for redundancy reasons, yet a switched network must not have loops. The solution is to allow physical loops, but create a loop-free logical topology using link aggregation, shortest path bridging, spanning tree protocol or TRILL on the network switches.

Broadcasts

In the case of broadcast packets over a switching loop, the situation may develop into a broadcast storm.

In a very simple example, a switch with three ports A, B, and C has a normal node connected to port A while ports B and C are connected to each other in a loop. All ports have the same link speed and run in full duplex mode. Now, when a broadcast frame enters the switch through port A, this frame is forwarded to all ports but the source port, i.e. ports B and C. Both frames exiting ports B and C traverse the loop in opposite directions and reenter the switch through their counterpart port. The frame received on port B is then forwarded to ports A and C, the frame received on port C to ports A and B. So, the node on port A receives two copies of its own broadcast frame while the other two copies produced by the loop continue to cycle. Likewise, each broadcast frame entering the system continues to cycle through the loop in both directions, rebroadcasting back to the network in each loop, and broadcasts accumulate. Eventually, the accumulated broadcasts exhaust the egress capacity of the links, the switch begins dropping frames, and communication across the switch becomes unreliable or even impossible.

MAC database instability

Switching loops can cause misleading entries in a switch's media access control (MAC) database and can cause endless unicast frames to be broadcast throughout the network. A loop can make a switch receive the same broadcast frames on two different ports, and alternatingly associate the sending MAC address with the one or the other port. It may then incorrectly direct traffic for that MAC address to the wrong port, effectively causing this traffic to be lost, and even causing other switches to incorrectly associate the sender's address with a wrong port as well.

Multiple frame transmissions

In a redundant switched network it is possible for an end device to receive the same frame multiple times.[ citation needed ]

TTL

Routing loops are tempered by a time to live (TTL) field in layer-3 packet header; Packets will circulate the routing loop until their TTL value expires. No TTL concept exists at layer 2 and packets in a switching loop will circulate until dropped, e.g. due to resource exhaustion.

See also

Related Research Articles

A broadcast domain is a logical division of a computer network, in which all nodes can reach each other by broadcast at the data link layer. A broadcast domain can be within the same LAN segment or it can be bridged to other LAN segments.

<span class="mw-page-title-main">Ethernet</span> Computer networking technology

Ethernet is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.

A network switch is networking hardware that connects devices on a computer network by using packet switching to receive and forward data to the destination device.

<span class="mw-page-title-main">Network topology</span> Arrangement of the elements of a communication network

Network topology is the arrangement of the elements of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses and computer networks.

The Spanning Tree Protocol (STP) is a network protocol that builds a loop-free logical topology for Ethernet networks. The basic function of STP is to prevent bridge loops and the broadcast radiation that results from them. Spanning tree also allows a network design to include backup links providing fault tolerance if an active link fails.

A virtual local area network (VLAN) is any broadcast domain that is partitioned and isolated in a computer network at the data link layer. In this context, virtual refers to a physical object recreated and altered by additional logic, within the local area network. VLANs work by applying tags to network frames and handling these tags in networking systems – creating the appearance and functionality of network traffic that is physically on a single network but acts as if it is split between separate networks. In this way, VLANs can keep network applications separate despite being connected to the same physical network, and without requiring multiple sets of cabling and networking devices to be deployed.

The data link layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between nodes on a network segment across the physical layer. The data link layer provides the functional and procedural means to transfer data between network entities and may also provide the means to detect and possibly correct errors that can occur in the physical layer.

A multilayer switch (MLS) is a computer networking device that switches on OSI layer 2 like an ordinary network switch and provides extra functions on higher OSI layers. The MLS was invented by engineers at Digital Equipment Corporation.

Virtual Private LAN Service (VPLS) is a way to provide Ethernet-based multipoint to multipoint communication over IP or MPLS networks. It allows geographically dispersed sites to share an Ethernet broadcast domain by connecting sites through pseudowires. The term sites includes multiplicities of both servers and clients. The technologies that can be used as pseudo-wire can be Ethernet over MPLS, L2TPv3 or even GRE. There are two IETF standards-track RFCs describing VPLS establishment.

<span class="mw-page-title-main">Network bridge</span> Device that creates a larger computer network from two smaller networks

A network bridge is a computer networking device that creates a single, aggregate network from multiple communication networks or network segments. This function is called network bridging. Bridging is distinct from routing. Routing allows multiple networks to communicate independently and yet remain separate, whereas bridging connects two separate networks as if they were a single network. In the OSI model, bridging is performed in the data link layer. If one or more segments of the bridged network are wireless, the device is known as a wireless bridge.

<span class="mw-page-title-main">Computer network</span> Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

A broadcast storm or broadcast radiation is the accumulation of broadcast and multicast traffic on a computer network. Extreme amounts of broadcast traffic constitute a broadcast storm. It can consume sufficient network resources so as to render the network unable to transport normal traffic. A packet that induces such a storm is occasionally nicknamed a Chernobyl packet.

A forwarding information base (FIB), also known as a forwarding table or MAC table, is most commonly used in network bridging, routing, and similar functions to find the proper output network interface controller to which the input interface should forward a packet. It is a dynamic table that maps MAC addresses to ports. It is the essential mechanism that separates network switches from Ethernet hubs. Content-addressable memory (CAM) is typically used to efficiently implement the FIB, thus it is sometimes called a CAM table.

IEEE 802.1aq is an amendment to the IEEE 802.1Q networking standard which adds support for Shortest Path Bridging (SPB). This technology is intended to simplify the creation and configuration of Ethernet networks while enabling multipath routing.

IEEE 802.1ad is an amendment to the IEEE 802.1Q-1998 networking standard which adds support for provider bridges. It was incorporated into the base 802.1Q standard in 2011. The technique specified by the standard is known informally as stacked VLANs or QinQ.

High-availability Seamless Redundancy (HSR) is a network protocol for Ethernet that provides seamless failover against failure of any single network component. PRP and HSR are independent of the application-protocol and can be used by most Industrial Ethernet protocols in the IEC 61784 suite. HSR does not cover the failure of end nodes, but redundant nodes can be connected via HSR.

Parallel Redundancy Protocol (PRP) is a network protocol standard for Ethernet that provides seamless failover against failure of any network component. This redundancy is invisible to the application.

In computer networking, a unicast flood is when a switch receives a unicast frame and treats it as a broadcast frame, flooding the frame to all other ports on the switch.

The link layer is the lowest layer in the TCP/IP model. It is also referred to as the network interface layer and mostly equivalent to the data link layer plus physical layer in OSI. This particular layer has several unique security vulnerabilities that can be exploited by a determined adversary.

Time-Sensitive Networking (TSN) is a set of standards under development by the Time-Sensitive Networking task group of the IEEE 802.1 working group. The TSN task group was formed in November 2012 by renaming the existing Audio Video Bridging Task Group and continuing its work. The name changed as a result of the extension of the working area of the standardization group. The standards define mechanisms for the time-sensitive transmission of data over deterministic Ethernet networks.

References

  1. "How to identify and quickly fix a network switching loop / switching loops?". May 19, 2016.