Multipath routing

Last updated

Multipath routing is a routing technique simultaneously using multiple alternative paths through a network. This can yield a variety of benefits such as fault tolerance, increased bandwidth, and improved security.

Contents

Mobile networks

To improve performance or fault tolerance, concurrent multipath routing (CMR) is often taken to mean simultaneous management and utilization of multiple available paths for the transmission of streams of data. The streams may be emanating from a single application or multiple applications. A stream is assigned a separate path, as uniquely possible given the number of paths available. If there are more streams than available paths, some streams will share paths. CMR provides better utilization of bandwidth by creating multiple transmission queues. It provides a degree of fault tolerance in that should a path fail, only the traffic assigned to that path is affected. There is also, ideally, an alternative path immediately available upon which to continue or restart the interrupted stream.

CMR provides better transmission performance and fault tolerance by providing simultaneous, parallel transport over multiple carriers with the ability to reassign an interrupted stream, and by load balancing over available assets. However, under CMR, some applications may be slower in offering traffic to the transport layer, thus starving paths assigned to them, causing under-utilization. Also, moving to the alternative path will incur a potentially disruptive period during which the connection is re-established.

True CMR

A more powerful form of CMR (true CMR) goes beyond merely presenting paths to applications to which they can bind. True CMR aggregates all available paths into a single, virtual path.

Applications send their packets to this virtual path, which is de-multiplexed at the network Layer. The packets are distributed to the physical paths via some algorithm e.g. round-robin or weighted fair queuing. Should a link fail, succeeding packets are not directed to that path and the stream continues uninterrupted to the application through the remaining path(s). This method provides significant performance benefits over the application level CMR:

Capillary routing

In networking and in graph theory, capillary routing, for a given network, is a multi-path solution between a pair of source and destination nodes. Unlike shortest-path routing or max-flow routing, for any given network topology - only one capillary routing solution exists.

Capillary routing can be constructed by an iterative linear programming process, transforming a single-path flow into a capillary route.

  1. First minimize the maximal value of the load on all of the network routing node links
    • Do that by minimizing a load upper bound value that is applied to all links.
    • The full mass of the flow will be split equally across the possible parallel routes.
  2. Find the bottleneck links of the first layer (see below), then set their loading amount at the found minimum.
  3. Additionally, minimize the maximal load of all remaining links, but now without the bottleneck links of the first layer.
    • This second iteration further refines the path diversity.
  4. Next, we determine the bottleneck links of the 2nd network layer.
    • Again, minimize the maximal load of all remaining links, but now without the bottlenecks of the 2nd network layer as well.
  5. Repeat this algorithm until the entire communication footprint is enclosed in the bottlenecks of the constructed layers.

At each functional layer of the network protocol, after minimizing the maximal load of links, the bottlenecks of the layer are discovered in a bottleneck detection process.

  1. At each iteration of the detection loop, we minimize the sending of traffic over all links having maximal loading, and being suspected as bottlenecks.
  2. Links unable to maintain their traffic load at the maximum are eventually removed from the candidate path list.
  3. The bottleneck detection process stops when there are no more links to remove, because this best path is now known.

See also

Related Research Articles

Quality of service (QoS) is the description or measurement of the overall performance of a service, such as a telephony or computer network, or a cloud computing service, particularly the performance seen by the users of the network. To quantitatively measure quality of service, several related aspects of the network service are often considered, such as packet loss, bit rate, throughput, transmission delay, availability, jitter, etc.

Routing is the process of selecting a path for traffic in a network or between or across multiple networks. Broadly, routing is performed in many types of networks, including circuit-switched networks, such as the public switched telephone network (PSTN), and computer networks, such as the Internet.

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP, which is part of the Transport layer of the TCP/IP suite. SSL/TLS often runs on top of TCP.

Network throughput refers to the rate of message delivery over a communication channel, such as Ethernet or packet radio, in a communication network. The data that these messages contain may be delivered over physical or logical links, or through network nodes. Throughput is usually measured in bits per second, and sometimes in data packets per second or data packets per time slot.

<span class="mw-page-title-main">Wireless mesh network</span> Radio nodes organized in a mesh topology

A wireless mesh network (WMN) is a communications network made up of radio nodes organized in a mesh topology. It can also be a form of wireless ad hoc network.

A wireless ad hoc network (WANET) or mobile ad hoc network (MANET) is a decentralized type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers or wireless access points. Instead, each node participates in routing by forwarding data for other nodes. The determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.

The Multipath On-demand Routing (MOR) protocol is a protocol to connect nodes in wireless sensor networks. It is an ad hoc routing protocol which is reactive or on-demand, meaning that it establishes routes as needed. The advantage of this approach is obvious if only a few routes are needed, since the routing overhead is less compared to the proactive approach of establishing routes whether or not they are needed. The disadvantage of on-demand establishment of routes is that connections take more time if the route needs to be established.

In computing, Microsoft's Windows Vista and Windows Server 2008 introduced in 2007/2008 a new networking stack named Next Generation TCP/IP stack, to improve on the previous stack in several ways. The stack includes native implementation of IPv6, as well as a complete overhaul of IPv4. The new TCP/IP stack uses a new method to store configuration settings that enables more dynamic control and does not require a computer restart after a change in settings. The new stack, implemented as a dual-stack model, depends on a strong host-model and features an infrastructure to enable more modular components that one can dynamically insert and remove.

Extremely Opportunistic Routing (ExOR) is a combination of routing protocol and media access control for a wireless ad hoc network, invented by Sanjit Biswas and Robert Morris of the MIT Artificial Intelligence Laboratory, and described in a 2005 paper. A very similar opportunistic routing scheme was also independently proposed by Zhenzhen Ye and Yingbo Hua from University of California, Riverside and presented in a paper in 2005. Previously open source, ExOR was available in 2005 but is no longer obtainable. The broadcast and retransmission strategies used by the algorithm were already described in the literature. ExOR is valuable because it can operate available digital radios to use some previously impractical algorithmic optimizations.

In multi-hop networks, Adaptive Quality of Service routing protocols have become increasingly popular and have numerous applications. One application in which it may be useful is in Mobile ad hoc networking (MANET).

Data center bridging (DCB) is a set of enhancements to the Ethernet local area network communication protocol for use in data center environments, in particular for use with clustering and storage area networks.

Mobile data offloading is the use of complementary network technologies for delivering data originally targeted for cellular networks. Offloading reduces the amount of data being carried on the cellular bands, freeing bandwidth for other users. It is also used in situations where local cell reception may be poor, allowing the user to connect via wired services with better connectivity.

Bufferbloat is a cause of high latency and jitter in packet-switched networks caused by excess buffering of packets. Bufferbloat can also cause packet delay variation, as well as reduce the overall network throughput. When a router or switch is configured to use excessively large buffers, even very high-speed networks can become practically unusable for many interactive applications like voice over IP (VoIP), audio streaming, online gaming, and even ordinary web browsing.

IEEE 802.11s is a wireless local area network (WLAN) standard and an IEEE 802.11 amendment for mesh networking, defining how wireless devices can interconnect to create a wireless LAN mesh network, which may be used for relatively fixed topologies and wireless ad hoc networks. The IEEE 802.11s task group drew upon volunteers from university and industry to provide specifications and possible design solutions for wireless mesh networking. As a standard, the document was iterated and revised many times prior to finalization.

Opportunistic mesh (OPM) is a wireless networking technology that aims to provide reliable and cost-effective wireless bandwidth when used to build the networking infrastructure of large-scale wireless systems.

QUIC is a general-purpose transport layer network protocol initially designed by Jim Roskind at Google. It was first implemented and deployed in 2012. It was publicly announced in 2013 as experimentation broadened, and was described at an IETF meeting. QUIC is used by more than half of all connections from the Chrome web browser to Google's servers. Microsoft Edge, Firefox, and Safari support it.

A mobile wireless sensor network (MWSN) can simply be defined as a wireless sensor network (WSN) in which the sensor nodes are mobile. MWSNs are a smaller, emerging field of research in contrast to their well-established predecessor. MWSNs are much more versatile than static sensor networks as they can be deployed in any scenario and cope with rapid topology changes. However, many of their applications are similar, such as environment monitoring or surveillance. Commonly, the nodes consist of a radio transceiver and a microcontroller powered by a battery, as well as some kind of sensor for detecting light, heat, humidity, temperature, etc.

<span class="mw-page-title-main">Multipath TCP</span> Transmission Control Protocol technology

Multipath TCP (MPTCP) is an ongoing effort of the Internet Engineering Task Force's (IETF) Multipath TCP working group, that aims at allowing a Transmission Control Protocol (TCP) connection to use multiple paths to maximize throughput and increase redundancy.

Associativity-based routing is a mobile routing protocol invented for wireless ad hoc networks, also known as mobile ad hoc networks (MANETs) and wireless mesh networks. ABR was invented in 1993, filed for a U.S. patent in 1996, and granted the patent in 1999. ABR was invented by Chai Keong Toh while doing his Ph.D. at Cambridge University.

<span class="mw-page-title-main">Saverio Mascolo</span> Italian information engineer

Saverio Mascolo is an Italian information engineer, academic and researcher. He is the former Head of the Department of Electrical Engineering and Information Science and the professor of Automatic Control at Department of Ingegneria Elettrica e dell'Informazione (DEI) at Politecnico di Bari, Italy.

References

To improve network security: