IEEE 1284

Last updated
An IEEE 1284 36-pin male micro ribbon printer cable connection. The computer side normally uses a DB-25 port instead of this connector IEEE 1284 36pin plughead.jpg
An IEEE 1284 36-pin male micro ribbon printer cable connection. The computer side normally uses a DB-25 port instead of this connector

IEEE 1284, also known as the Centronics port, is a standard that defines bi-directional parallel communications between computers and other devices. It was originally developed in the 1970s by Centronics before its IEEE standardization.

Contents

History

An IEEE 1284 36-pin female on a circuit board Centronics-36F.jpg
An IEEE 1284 36-pin female on a circuit board

In the 1970s, Centronics developed the now-familiar printer parallel port that soon became a de facto standard. Centronics had introduced the first successful low-cost seven-wire print head[ citation needed ], which used a series of solenoids to pull the individual metal pins to strike a ribbon and the paper.

A dot matrix print head consists of a series of metal pins arranged in a vertical row. Each pin is attached to some sort of actuator, a solenoid in the case of Centronics, which can pull the pin forward to strike a ribbon and the paper. The entire print head is moved horizontally in order to print a line of text, striking the paper several times to produce a matrix for each character. Character sets on early printers normally used 7 by 5 "pixels" to produce 80-column text.

The complexity of printing a character as a sequence of columns of dots is managed by the printer electronics, which receives character encodings from the computer one at a time, with the bits transferred serially or in parallel. [1] As printers grew in sophistication, and the cost of memory dropped, printers began adding increasing amounts of buffer memory, initially a line or two, but then whole pages and then documents.

The original port design was send-only, allowing data to be sent from the host computer to the printer. Separate pins in the port allow status information to be sent back to the computer. This was a serious limitation as printers became "smarter" and a richer set of status codes were desired. This led to an early expansion of the system introduced by HP, the "Bitronics" implementation released in 1992. This used the status pins of the original port to form a 4-bit parallel port for sending arbitrary data back to the host.

A further modification, "Bi-Directional", used the status pins to indicate the direction of data flow on the 8-bit main data bus; by indicating there was data to send to the host on one of the pins, all eight data pins became available for use. This proved adaptable, and led to the "Enhanced Parallel Port" standard, which worked like Bi-Directional mode but greatly increased the signalling speeds to 2 MByte/s, and later the "Extended Capability Port" version increased this to 2.5 MByte/s.

In 1991 the Network Printing Alliance was formed to develop a new standard. In March 1994, the IEEE 1284 specification was released. 1284 included all of these modes, and allowed operation in any of them.

Characteristics

An IEEE 1284 compliant printer cable, with both DB-25 and 36-pin Centronics connectors IEEE 1284 printer cable, type AB-0135.jpg
An IEEE 1284 compliant printer cable, with both DB-25 and 36-pin Centronics connectors

The IEEE 1284 standard allows for faster throughput and bidirectional data flow with a theoretical maximum throughput of 4 megabytes per second; actual throughput is around 2 megabytes/second depending on hardware. In the printer venue, this allows for faster printing and back-channel status and management. Since the new standard allowed the peripheral to send large amounts of data back to the host, devices that had previously used SCSI interfaces could be produced at a much lower cost. This included scanners, tape drives, hard disks, computer networks connected directly via parallel interface, network adapters and other devices. No longer was the consumer required to purchase an expensive SCSI card—they could simply use their built-in parallel interface.

The parallel interface has since been mostly displaced by local area network interfaces and USB 2.0.

Modes

IEEE 1284 can operate in five modes:

Most recent computers that include a parallel port can operate the port in ECP or EPP mode, or both simultaneously.

IEEE-1284 requires that bi-directional device communication is always initiated in Nibble Mode. If the host receives no reply in this mode, it will assume that the device is a legacy printer, and enter Compatibility Mode. Otherwise, the best mode that is supported on both sides of the connection is negotiated between the host and client devices by exchanging standardized Nibble Mode messages.

Connectors and cables

Mini-Centronics 36-pin male connector (top) with Micro ribbon 36-pin male Centronics connector (bottom) Mini-Centronics 36 pin with Micro-Centronics 36 pin.jpg
Mini-Centronics 36-pin male connector (top) with Micro ribbon 36-pin male Centronics connector (bottom)
Mini-Centronics 36-pin male connector (right) with Micro ribbon 36-pin male Centronics connector (left). Micro-Centronics 36 pin with Mini-Centronics 36 pin.jpg
Mini-Centronics 36-pin male connector (right) with Micro ribbon 36-pin male Centronics connector (left).

An IEEE-compliant cable must meet several standards of wiring and quality. Three types of connectors are defined:

There are two kinds of IEEE 1284 cables:

In IEEE 1284 Daisy Chain Specification, up to eight devices can be connected to a single parallel port.

All modes use TTL voltage logic levels, which limits the possible cable length to a few meters unless expensive special cables are used. [4]

Standards

Typical color codes

Here are the typical colors found on 25-pin IEEE 1284 cable leads.[ citation needed ]

PinColorAlt Color
1red
2pink/red
3brown
4orange
5light-blue/yellow
6light-blue/red
7light-blue
8blue
9light-blue/blackgreen/blue
10green
11yellow
12pink/orange
13gray
14gray/green
15pink/blueorange/white
16pink/blackbrown/white
17light blue/bluelight blue/green
18blue-white
19green/blackgreen/red
20pink/whiteyellow/black
21gray/black
22white/blackgray/yellow
23purple
24pink
25white
NCwhite/yellowwhite/green
Allwhite/purplered/black

See also

Related Research Articles

<span class="mw-page-title-main">Parallel ATA</span> Interface standard for the connection of storage devices

Parallel ATA (PATA), originally AT Attachment, also known as IDE, is a standard interface designed for IBM PC-compatible computers. It was first developed by Western Digital and Compaq in 1986 for compatible hard drives and CD or DVD drives. The connection is used for storage devices such as hard disk drives, floppy disk drives, optical disc drives, and tape drives in computers.

<span class="mw-page-title-main">Bus (computing)</span> System that transfers data between components within a computer

In computer architecture, a bus is a communication system that transfers data between components inside a computer, or between computers. This expression covers all related hardware components and software, including communication protocols.

<span class="mw-page-title-main">SCSI</span> Set of computer and peripheral connection standards

Small Computer System Interface is a set of standards for physically connecting and transferring data between computers and peripheral devices, best known for its use with storage devices such as hard disk drives. SCSI was introduced in the 1980s and has seen widespread use on servers and high-end workstations, with new SCSI standards being published as recently as SAS-4 in 2017.

<span class="mw-page-title-main">USB</span> Standard for computer data connections

Universal Serial Bus (USB) is an industry standard that allows data exchange and delivery of power between many various types of electronics. It specifies its architecture, in particular its physical interface, and communication protocols for data transfer and power delivery to and from hosts, such as personal computers, to and from peripheral devices, e.g. displays, keyboards, and mass storage devices, and to and from intermediate hubs, which multiply the number of a host's ports. USB was originally designed to standardize the connection of peripherals to computers, replacing various interfaces such as serial ports, parallel ports, game ports, and ADB ports, and prior versions of USB became commonplace on a wide range of devices, such as keyboards, mice, cameras, printers, scanners, flash drives, smartphones, game consoles, and power banks. It has evolved into a standard to replace virtually all common ports on computers, mobile devices, peripherals, power supplies, and manifold other small electronics. In the current standard the USB-C connector replaces the many various connectors for power, displays, and many other uses, as well as all previous USB connectors.

<span class="mw-page-title-main">Serial port</span> Communication interface transmitting information sequentially

On computers, a serial port is a serial communication interface through which information transfers in or out sequentially one bit at a time. This is in contrast to a parallel port, which communicates multiple bits simultaneously in parallel. Throughout most of the history of personal computers, data has been transferred through serial ports to devices such as modems, terminals, various peripherals, and directly between computers.

<span class="mw-page-title-main">Parallel port</span> Computer interface

In computing, a parallel port is a type of interface found on early computers for connecting peripherals. The name refers to the way the data is sent; parallel ports send multiple bits of data at once, as opposed to serial communication, in which bits are sent one at a time. To do this, parallel ports require multiple data lines in their cables and port connectors and tend to be larger than contemporary serial ports, which only require one data line.

<span class="mw-page-title-main">IEEE-488</span> General Purpose Interface Bus (GPIB) specification

IEEE 488, also known as HP-IB and generically as GPIB, is a short-range digital communications 8-bit parallel multi-master interface bus specification developed by Hewlett-Packard. It subsequently became the subject of several standards.

Serial Peripheral Interface (SPI) is a de facto standard for synchronous serial communication, used primarily in embedded systems for short-distance wired communication between integrated circuits.

Serial Storage Architecture (SSA) was a serial transport protocol used to attach disk drives to server computers.

JTAG is an industry standard for verifying designs and testing printed circuit boards after manufacture.

The Parallel Line Internet Protocol (PLIP) is a computer networking protocol for direct computer-to-computer communications using the parallel port normally used for connections to a printer.

<span class="mw-page-title-main">Parallel communication</span> Method of data transmission in which bits are conveyed in parallel

In data transmission, parallel communication is a method of conveying multiple binary digits (bits) simultaneously using multiple conductors. This contrasts with serial communication, which conveys only a single bit at a time; this distinction is one way of characterizing a communications link.

<span class="mw-page-title-main">Low Pin Count</span> Low-bandwidth computer motherboard bus

The Low Pin Count (LPC) bus is a computer bus used on IBM-compatible personal computers to connect low-bandwidth devices to the CPU, such as the BIOS ROM, "legacy" I/O devices, and Trusted Platform Module (TPM). "Legacy" I/O devices usually include serial and parallel ports, PS/2 keyboard, PS/2 mouse, and floppy disk controller.

<span class="mw-page-title-main">Micro ribbon connector</span> Type of electrical connector

The micro ribbon or miniature ribbonconnector is a common type of electrical connector for a variety of applications, such as in computer and telecommunications equipment having many contacts.

<span class="mw-page-title-main">Commodore 64 peripherals</span>

The Commodore 64 home computer used various external peripherals. Due to the backwards compatibility of the Commodore 128, most peripherals would also work on that system. There is also some compatibility with the VIC-20 and Commodore PET.

A SCSI connector is used to connect computer parts that use a system called SCSI to communicate with each other. Generally, two connectors, designated male and female, plug together to form a connection which allows two components, such as a computer and a disk drive, to communicate with each other. SCSI connectors can be electrical connectors or optical connectors. There have been a large variety of SCSI connectors in use at one time or another in the computer industry. Twenty-five years of evolution and three major revisions of the standards resulted in requirements for Parallel SCSI connectors that could handle an 8, 16 or 32 bit wide bus running at 5, 10 or 20 megatransfer/s, with conventional or differential signaling. Serial SCSI added another three transport types, each with one or more connector types. Manufacturers have frequently chosen connectors based on factors of size, cost, or convenience at the expense of compatibility.

<span class="mw-page-title-main">Cromemco Octart</span>

The Cromemco Octart was an expansion card made by Cromemco for their range of S-100 bus based computer systems. The card provided eight serial bus channels and a single bi-directional parallel port. The serial connections were often used to interface eight computer terminals to the host system. In combination with the Cromemco Cromix multi-user operating system, this allowed different users to concurrently work on the system. The parallel port was typically connected to an IEEE 1284-type printer.

IFSP, or radial parallel interface, was a parallel interface similar to the Centronics connector but incompatible, as it had different signal polarities and handshake protocol. It was used in printers and computers manufactured in Comecon.

<span class="mw-page-title-main">IEEE 1394</span> Serial bus interface standard, also known as Firewire

IEEE 1394 is an interface standard for a serial bus for high-speed communications and isochronous real-time data transfer. It was developed in the late 1980s and early 1990s by Apple in cooperation with a number of companies, primarily Sony and Panasonic. It is most commonly known by the name FireWire (Apple), though other brand names exist such as i.LINK (Sony), and Lynx.

<span class="mw-page-title-main">DECwriter</span> 1970s-80s computer terminal series

The DECwriter series was a family of computer terminals from Digital Equipment Corporation (DEC). They were typically used in a fashion similar to a teletype, with a computer output being printed to paper and the user inputting information on the keyboard. In contrast to teletypes, the DECwriters were based on dot matrix printer technology, one of the first examples of such a system to be introduced. Versions lacking a keyboard were also available for use as computer printers, which eventually became the only models as smart terminals became the main way to interact with mainframes and minicomputers in the 1980s.

References

  1. Centronics 101, 101A, 101AL, 102A, and 306 Printers: Specifications and Interface Information
  2. EP 0640229 Buxton, C.L. / Kohtz, R.A. / Zenith Data Systems Corp.: Enhanced parallel port. filing date 15 May 1992
  3. LAVA Computer MFG Inc (2002). "IEEE 1284: Parallel Ports" (PDF). Archived from the original (PDF) on 15 November 2006.
  4. IBM Parallel Port FAQ/Tutorial