This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
IEEE 1284, also known as the Centronics port, is a standard that defines bi-directional parallel communications between computers and other devices. It was originally developed in the 1970s by Centronics before its IEEE standardization.
In the 1970s, Centronics developed the now-familiar printer parallel port that soon became a de facto standard. Centronics had introduced the first successful low-cost seven-wire print head[ citation needed ], which used a series of solenoids to pull the individual metal pins to strike a ribbon and the paper.
A dot matrix print head consists of a series of metal pins arranged in a vertical row. Each pin is attached to some sort of actuator, a solenoid in the case of Centronics, which can pull the pin forward to strike a ribbon and the paper. The entire print head is moved horizontally in order to print a line of text, striking the paper several times to produce a matrix for each character. Character sets on early printers normally used 7 by 5 "pixels" to produce 80-column text.
The complexity of printing a character as a sequence of columns of dots is managed by the printer electronics, which receives character encodings from the computer one at a time, with the bits transferred serially or in parallel. [1] As printers grew in sophistication, and the cost of memory dropped, printers began adding increasing amounts of buffer memory, initially a line or two, but then whole pages and then documents.
The original port design was send-only, allowing data to be sent from the host computer to the printer. Separate pins in the port allow status information to be sent back to the computer. This was a serious limitation as printers became "smarter" and a richer set of status codes were desired. This led to an early expansion of the system introduced by HP, the "Bitronics" implementation released in 1992. This used the status pins of the original port to form a 4-bit parallel port for sending arbitrary data back to the host.
A further modification, "Bi-Directional", used the status pins to indicate the direction of data flow on the 8-bit main data bus; by indicating there was data to send to the host on one of the pins, all eight data pins became available for use. This proved adaptable, and led to the "Enhanced Parallel Port" standard, which worked like Bi-Directional mode but greatly increased the signalling speeds to 2 MB/s, and later the "Extended Capability Port" version increased this to 2.5 MB/s.
In 1991 the Network Printing Alliance was formed to develop a new standard. In March 1994, the IEEE 1284 specification was released. 1284 included all of these modes, and allowed operation in any of them.
The IEEE 1284 standard allows for faster throughput and bidirectional data flow with a theoretical maximum throughput of 4 MB/s; actual throughput is around 2 MB/s depending on hardware. In the printer venue, this allows for faster printing and back-channel status and management. Since the new standard allowed the peripheral to send large amounts of data back to the host, devices that had previously used SCSI interfaces could be produced at a much lower cost. This included scanners, tape drives, hard disks, computer networks connected directly via parallel interface, network adapters and other devices. No longer was the consumer required to purchase an expensive SCSI card—they could simply use their built-in parallel interface.
The parallel interface has since been mostly displaced by local area network interfaces and USB 2.0.
IEEE 1284 can operate in five modes:
Most recent computers that include a parallel port can operate the port in ECP or EPP mode, or both simultaneously.
IEEE-1284 requires that bi-directional device communication is always initiated in Nibble Mode. If the host receives no reply in this mode, it will assume that the device is a legacy printer, and enter Compatibility Mode. Otherwise, the best mode that is supported on both sides of the connection is negotiated between the host and client devices by exchanging standardized Nibble Mode messages.
An IEEE-compliant cable must meet several standards of wiring and quality. Three types of connectors are defined:
There are two kinds of IEEE 1284 cables:
In IEEE 1284 Daisy Chain Specification, up to eight devices can be connected to a single parallel port.
All modes use TTL voltage logic levels, which limits the possible cable length to a few meters unless expensive special cables are used. [4]
The following are the typical colors found on 25-pin IEEE 1284 cable leads.[ citation needed ]
Pin | Color | Alt. color |
---|---|---|
1 | red | |
2 | pink/red | |
3 | brown | |
4 | orange | |
5 | light-blue/yellow | |
6 | light-blue/red | |
7 | light-blue | |
8 | blue | |
9 | light-blue/black | green/blue |
10 | green | |
11 | yellow | |
12 | pink/orange | |
13 | gray | |
14 | gray/green | |
15 | pink/blue | orange/white |
16 | pink/black | brown/white |
17 | light blue/blue | light blue/green |
18 | blue-white | |
19 | green/black | green/red |
20 | pink/white | yellow/black |
21 | gray/black | |
22 | white/black | gray/yellow |
23 | purple | |
24 | pink | |
25 | white | |
NC | white/yellow | white/green |
All | white/purple | red/black |
Parallel ATA (PATA), originally AT Attachment, also known as Integrated Drive Electronics (IDE), is a standard interface designed for IBM PC-compatible computers. It was first developed by Western Digital and Compaq in 1986 for compatible hard drives and CD or DVD drives. The connection is used for storage devices such as hard disk drives, floppy disk drives, optical disc drives, and tape drives in computers.
In computer architecture, a bus is a communication system that transfers data between components inside a computer, or between computers. This expression covers all related hardware components and software, including communication protocols.
Small Computer System Interface is a set of standards for physically connecting and transferring data between computers and peripheral devices, best known for its use with storage devices such as hard disk drives. SCSI was introduced in the 1980s and has seen widespread use on servers and high-end workstations, with new SCSI standards being published as recently as SAS-4 in 2017.
Universal Serial Bus (USB) is an industry standard that allows data exchange and delivery of power between many types of electronics. It specifies its architecture, in particular its physical interface, and communication protocols for data transfer and power delivery to and from hosts, such as personal computers, to and from peripheral devices, e.g. displays, keyboards, and mass storage devices, and to and from intermediate hubs, which multiply the number of a host's ports.
A serial port is a serial communication interface through which information transfers in or out sequentially one bit at a time. This is in contrast to a parallel port, which communicates multiple bits simultaneously in parallel. Throughout most of the history of personal computers, data has been transferred through serial ports to devices such as modems, terminals, various peripherals, and directly between computers.
In computing, a parallel port is a type of interface found on early computers for connecting peripherals. The name refers to the way the data is sent; parallel ports send multiple bits of data at once, as opposed to serial communication, in which bits are sent one at a time. To do this, parallel ports require multiple data lines in their cables and port connectors and tend to be larger than contemporary serial ports, which only require one data line.
IEEE 488, also known as HP-IB and generically as GPIB, is a short-range digital communications 8-bit parallel multi-master interface bus specification developed by Hewlett-Packard. It subsequently became the subject of several standards.
Serial Peripheral Interface (SPI) is a de facto standard for synchronous serial communication, used primarily in embedded systems for short-distance wired communication between integrated circuits.
JTAG is an industry standard for verifying designs of and testing printed circuit boards after manufacture.
The Parallel Line Internet Protocol (PLIP) is a computer networking protocol for direct computer-to-computer communications using the parallel port normally used for connections to a printer.
In data transmission, parallel communication is a method of conveying multiple binary digits (bits) simultaneously using multiple conductors. This contrasts with serial communication, which conveys only a single bit at a time; this distinction is one way of characterizing a communications link.
The Low Pin Count (LPC) bus is a computer bus used on IBM-compatible personal computers to connect low-bandwidth devices to the CPU, such as the BIOS ROM, "legacy" I/O devices, and Trusted Platform Module (TPM). "Legacy" I/O devices usually include serial and parallel ports, PS/2 keyboard, PS/2 mouse, and floppy disk controller.
The micro ribbon or miniature ribbonconnector is a common type of electrical connector for a variety of applications, such as in computer and telecommunications equipment having many contacts.
In-system programming (ISP), or also called in-circuit serial programming (ICSP), is the ability of some programmable logic devices, microcontrollers, chipsets and other embedded devices to be programmed while installed in a complete system, rather than requiring the chip to be programmed prior to installing it into the system. It also allows firmware updates to be delivered to the on-chip memory of microcontrollers and related processors without requiring specialist programming circuitry on the circuit board, and simplifies design work.
The Commodore 64 home computer used various external peripherals. Due to the backwards compatibility of the Commodore 128, most peripherals would also work on that system. There is also some compatibility with the VIC-20 and Commodore PET.
A SCSI connector is used to connect computer parts that communicate with each other via the SCSI standard. Generally, two connectors, designated male and female, plug together to form a connection which allows two components, such as a computer and a disk drive, to communicate with each other. SCSI connectors can be electrical connectors or optical connectors. There have been a large variety of SCSI connectors in use at one time or another in the computer industry. Twenty-five years of evolution and three major revisions of the standards resulted in requirements for Parallel SCSI connectors that could handle an 8, 16 or 32 bit wide bus running at 5, 10 or 20 megatransfer/s, with conventional or differential signaling. Serial SCSI added another three transport types, each with one or more connector types. Manufacturers have frequently chosen connectors based on factors of size, cost, or convenience at the expense of compatibility.
Parallel SCSI is the earliest of the interface implementations in the SCSI family. SPI is a parallel bus; there is one set of electrical connections stretching from one end of the SCSI bus to the other. A SCSI device attaches to the bus but does not interrupt it. Both ends of the bus must be terminated.
The Cromemco Octart was an expansion card made by Cromemco for their range of S-100 bus based computer systems. The card provided eight serial bus channels and a single bi-directional parallel port. The serial connections were often used to interface eight computer terminals to the host system. In combination with the Cromemco Cromix multi-user operating system, this allowed different users to concurrently work on the system. The parallel port was typically connected to an IEEE 1284-type printer.
IFSP, or radial parallel interface, was a parallel interface similar to the Centronics connector but incompatible, as it had different signal polarities and handshake protocol. It was used in printers and computers manufactured in Comecon.
IEEE 1394 is an interface standard for a serial bus for high-speed communications and isochronous real-time data transfer. It was developed in the late 1980s and early 1990s by Apple in cooperation with a number of companies, primarily Sony and Panasonic. It is most commonly known by the name FireWire (Apple), though other brand names exist such as i.LINK (Sony), and Lynx.