VESA Local Bus | |
Year created | 1992 |
---|---|
Created by | VESA |
Superseded by | PCI (1993) |
Width in bits | 32 |
No. of devices | 3 [1] |
Speed | 25–40 MHz |
Style | Parallel |
Hotplugging interface | no |
External interface | no |
The VESA Local Bus (usually abbreviated to VL-Bus or VLB) is a short-lived expansion bus introduced during the i486 generation of x86 IBM-compatible personal computers. Created by VESA (Video Electronics Standards Association), the VESA Local Bus worked alongside the then-dominant ISA bus to provide a standardized high-speed conduit intended primarily to accelerate video (graphics) operations. VLB provides a standardized fast path that add-in (video) card makers could tap for greatly accelerated memory-mapped I/O and DMA, while still using the familiar ISA bus to handle basic device duties such as interrupts and port-mapped I/O. Some high-end 386DX motherboards also had a VL-Bus slot.
In the early 1990s, the I/O bandwidth of the prevailing ISA bus, 8.33 MB/s for standard 16 bit 8.33 MHz slots, had become a critical bottleneck to PC video and graphics performance. The need for faster graphics was driven by increased adoption of graphical user interfaces in PC operating systems. While IBM did produce a viable successor to ISA with the Micro Channel Architecture offering a bandwidth of 66 MB/s, it failed in the market because hardware manufacturers did not want to pay steep licensing fees to use it. While an extension of the royalty-free ISA bus in the form of EISA open standard was developed to counter MCA, its bandwidth of 33.32 MB/s was unable to offer enough improvement over ISA to meet the significant increase in bandwidth desired for graphics. It would be superseded by Peripheral Component Interconnect (PCI), starting at speeds of 133 MB/s (32-bit at 33 MHz in the standard configuration)
Thus for a short time, a market opening occurred where video card manufacturers and motherboard chipset makers created their own proprietary implementations of local buses to provide graphics cards direct access to the processor and system memory. This avoided the limitations of the ISA bus while being less costly than a "licensed IBM MCA machine". It is important to note that at the time the cost to migrate to an MCA architecture machine from an ISA machine was substantial. MCA machines generally did not offer ISA slots, thus a migration to MCA architecture meant that any prior investment in ISA cards was made unusable. Additionally, makers of MCA-compatible cards were subject to IBM's licensing fees, which combined with MCA's greater technical requirements and expense to implement. It did have the effect of making an MCA version of a peripheral card significantly more expensive than its ISA counterpart.
So while these ad-hoc manufacturer-specific solutions were effective, they were not standardized, and there were no provisions for providing interoperability. This drew the attention of the VESA consortium and resulted in a proposal for a voluntary and royalty-free local bus standard in 1992. [2] An additional benefit from this standardization (beyond the primary goal of greater graphics card performance) was that other devices could also be designed to utilize the performance offered from VLB; notably, mass-storage controllers were offered for VLB, providing increased hard-disk performance. VLB bandwidth depended on the CPU's bus speed: It started at 100 MB/s for CPUs with a 25 MHz bus, increased to 133 MB/s at 33 MHz and 160 MB/s at 40 MHz, and reached 200 MB/s at 50 MHz.
A "VLB slot" itself is an additional edge connector placed in-line with the traditional ISA or EISA connector, with this extended portion often colored a distinctive brown. The result is a normal ISA or EISA slot being additionally capable of accepting VLB-compatible cards. Traditional ISA cards remain compatible, as they do not have pins past the normal ISA or EISA portion of the slot. The reverse was also true – VLB cards are by necessity quite long in order to reach the VLB connector and were reminiscent of older full-length expansion cards from the earlier IBM XT era. The VLB portion of a slot looks similar to an IBM MCA slot, as indeed it is the same physical 116-pin connector used by MCA cards, rotated by 180 degrees. The IBM MCA standard had not been as popular as IBM expected, and there was an ample surplus of the connector, making it inexpensive and readily available.[ citation needed ]
The VESA Local Bus was designed as a stopgap solution to the problem of the ISA bus's limited bandwidth. As such, one requirement for VLB to gain industry adoption was that it had to be a minimal burden for manufacturers to implement, in terms of board re-design and component costs; otherwise, manufacturers would not have been convinced to change from their own proprietary solutions. As VLB fundamentally ties a card directly to the 486 processor bus with minimal intermediary logic (reducing logic design and component costs), timing and arbitration duties were strongly dependent on the cards and CPU. [1]
This simplicity of VLB unfortunately created several factors that served to limit its useful life substantially:
As VLB devices have direct high-speed access to system memory at the same level as the main processor, there is no way for the system to intervene if devices were mis-configured or became unstable. If two devices overwrite the same memory location in a conflict, and the hard-disk controller relies on this location (the HDD controller often being the second conflicting device), there is the all-too-common[ citation needed ] possibility of massive data corruption.
The 486DX-50's successor, the 486DX2-66, circumvents this problem by using a slower but more compatible bus speed (33 MHz) and a multiplier (×2) to derive the processor clock speed.
Due to the length of a VLB slot and the difficult installation that results from its length, a slang alternative use of the acronym VLB is Very Long Bus. [8]
Despite these problems, the VESA Local Bus became very commonplace on later 486 motherboards, with a majority of later (post-1992) 486-based systems featuring a VESA Local Bus video card. VLB importantly offers a less costly high-speed interface for mainstream systems, as only by 1994 was PCI commonly available outside of the server market through the Pentium and Intel's chipsets. PCI finally displaced the VESA Local Bus (and also EISA) in the last years of the 486 market, with the last generation of 80486 motherboards featuring PCI slots instead of VLB-capable ISA slots. However, some manufacturers did develop and offer "VIP" (VLB/ISA/PCI) motherboards with all three slot types.
Bus width | 32 bits |
---|---|
Compatible with | 8 bit ISA, 16 bit ISA, VLB |
Pins | 112 |
Vcc | +5 V |
Clock |
|
Bandwidth |
|
Accelerated Graphics Port (AGP) is a parallel expansion card standard, designed for attaching a video card to a computer system to assist in the acceleration of 3D computer graphics. It was originally designed as a successor to PCI-type connections for video cards. Since 2004, AGP was progressively phased out in favor of PCI Express (PCIe), which is serial, as opposed to parallel; by mid-2008, PCI Express cards dominated the market and only a few AGP models were available, with GPU manufacturers and add-in board partners eventually dropping support for the interface in favor of PCI Express.
The Extended Industry Standard Architecture is a bus standard for IBM PC compatible computers. It was announced in September 1988 by a consortium of PC clone vendors as an alternative to IBM's proprietary Micro Channel architecture (MCA) in its PS/2 series.
Industry Standard Architecture (ISA) is the 16-bit internal bus of IBM PC/AT and similar computers based on the Intel 80286 and its immediate successors during the 1980s. The bus was (largely) backward compatible with the 8-bit bus of the 8088-based IBM PC, including the IBM PC/XT as well as IBM PC compatibles.
The Intel 486, officially named i486 and also known as 80486, is a microprocessor. It is a higher-performance follow-up to the Intel 386. The i486 was introduced in 1989. It represents the fourth generation of binary compatible CPUs following the 8086 of 1978, the Intel 80286 of 1982, and 1985's i386.
A motherboard is the main printed circuit board (PCB) in general-purpose computers and other expandable systems. It holds and allows communication between many of the crucial electronic components of a system, such as the central processing unit (CPU) and memory, and provides connectors for other peripherals. Unlike a backplane, a motherboard usually contains significant sub-systems, such as the central processor, the chipset's input/output and memory controllers, interface connectors, and other components integrated for general use.
Peripheral Component Interconnect (PCI) is a local computer bus for attaching hardware devices in a computer and is part of the PCI Local Bus standard. The PCI bus supports the functions found on a processor bus but in a standardized format that is independent of any given processor's native bus. Devices connected to the PCI bus appear to a bus master to be connected directly to its own bus and are assigned addresses in the processor's address space. It is a parallel bus, synchronous to a single bus clock. Attached devices can take either the form of an integrated circuit fitted onto the motherboard or an expansion card that fits into a slot. The PCI Local Bus was first implemented in IBM PC compatibles, where it displaced the combination of several slow Industry Standard Architecture (ISA) slots and one fast VESA Local Bus (VLB) slot as the bus configuration. It has subsequently been adopted for other computer types. Typical PCI cards used in PCs include: network cards, sound cards, modems, extra ports such as Universal Serial Bus (USB) or serial, TV tuner cards and hard disk drive host adapters. PCI video cards replaced ISA and VLB cards until rising bandwidth needs outgrew the abilities of PCI. The preferred interface for video cards then became Accelerated Graphics Port (AGP), a superset of PCI, before giving way to PCI Express.
Direct memory access (DMA) is a feature of computer systems that allows certain hardware subsystems to access main system memory independently of the central processing unit (CPU).
In computing, an expansion card is a printed circuit board that can be inserted into an electrical connector, or expansion slot on a computer's motherboard to add functionality to a computer system. Sometimes the design of the computer's case and motherboard involves placing most of these slots onto a separate, removable card. Typically such cards are referred to as a riser card in part because they project upward from the board and allow expansion cards to be placed above and parallel to the motherboard.
The Amiga 2000, or A2000, is a personal computer released by Commodore in March 1987. It was introduced as a "big box" expandable variant of the Amiga 1000 but quickly redesigned to share most of its electronic components with the contemporary Amiga 500 for cost reduction. Expansion capabilities include two 3.5" drive bays and one 5.25" bay that could be used by a 5.25" floppy drive, a hard drive, or CD-ROM once they became available.
A graphics card is a computer expansion card that generates a feed of graphics output to a display device such as a monitor. Graphics cards are sometimes called discrete or dedicated graphics cards to emphasize their distinction to integrated graphics processor on the motherboard or the CPU. A graphics processing unit (GPU) that performs the necessary computations is the main component in a graphics card, but the acronym "GPU" is sometimes also used to erroneously refer to the graphics card as a whole.
Micro Channel architecture, or the Micro Channel bus, is a proprietary 16- or 32-bit parallel computer bus introduced by IBM in 1987 which was used on PS/2 and other computers until the mid-1990s. Its name is commonly abbreviated as "MCA", although not by IBM. In IBM products, it superseded the ISA bus and was itself subsequently superseded by the PCI bus architecture.
PCI Express, officially abbreviated as PCIe or PCI-e, is a high-speed serial computer expansion bus standard, designed to replace the older PCI, PCI-X and AGP bus standards. It is the common motherboard interface for personal computers' graphics cards, sound cards, hard disk drive host adapters, SSDs, Wi-Fi and Ethernet hardware connections. PCIe has numerous improvements over the older standards, including higher maximum system bus throughput, lower I/O pin count and smaller physical footprint, better performance scaling for bus devices, a more detailed error detection and reporting mechanism, and native hot-swap functionality. More recent revisions of the PCIe standard provide hardware support for I/O virtualization.
The Personal System/2 or PS/2 is IBM's second generation of personal computers. Released in 1987, it officially replaced the IBM PC, XT, AT, and PC Convertible in IBM's lineup. Many of the PS/2's innovations, such as the 16550 UART, 1440 KB 3.5-inch floppy disk format, 72-pin SIMMs, the PS/2 port, and the VGA video standard, went on to become standards in the broader PC market.
The Amiga 4000, or A4000, from Commodore is the successor of the Amiga 2000 and Amiga 3000 computers. There are two models: the A4000/040 released in October 1992 with a Motorola 68040 CPU, and the A4000/030 released in April 1993 with a Motorola 68EC030.
PCI-X, short for Peripheral Component Interconnect eXtended, is a computer bus and expansion card standard that enhances the 32-bit PCI local bus for higher bandwidth demanded mostly by servers and workstations. It uses a modified protocol to support higher clock speeds, but is otherwise similar in electrical implementation. PCI-X 2.0 added speeds up to 533 MHz, with a reduction in electrical signal levels.
The Tseng Labs ET4000 was a line of SVGA graphics controller chips during the early 1990s, commonly found in many 386/486 and compatible systems, with some models, notably the ET4000/W32 and later chips, offering graphics acceleration. Offering above average host interface throughput coupled with a moderate price, Tseng Labs' ET4000 chipset family were well regarded for their performance, and were integrated into many companies' lineups, notably with Hercules' Dynamite series, the Diamond Stealth 32 and several Speedstar cards, and on many generic boards.
The feature connector was an internal connector found mostly in some older ISA, VESA Local Bus, and PCI graphics cards, but also on some early AGP ones. It was intended for use by devices which needed to exchange large amounts of data with the graphics card without hogging a computer system's CPU or data bus, such as TV tuner cards, video capture cards, MPEG video decoders, and first generation 3D graphic accelerator cards. Early examples include the IBM EGA video adapter.
GIO is a computer bus standard developed by SGI and used in a variety of their products in the 1990s as their primary expansion system. GIO was similar in concept to competing standards such as NuBus or (later) PCI, but saw little use outside SGI and severely limited the devices available on their platform as a result. Most devices using GIO were SGI's own graphics cards, although a number of cards supporting high-speed data access such as Fibre Channel and FDDI were available from third parties. Later SGI machines use the XIO bus, which is laid out as a computer network as opposed to a bus.
The ATI Mach line was a series of 2D graphics accelerators for personal computers developed by ATI Technologies. It became an extension to the ATI Wonder series of cards. The first chip in the series was the ATI Mach8. It was essentially a clone of the IBM 8514/A with a few notable extensions such as Crystal fonts. Being one of the first graphics accelerator chips on the market, the Mach8 did not have an integrated VGA core. In order to use the first Mach8 coprocessor cards, a separate VGA card was required. This increased the cost of ownership as one had to purchase two rather than one expansion card for graphics. A temporary solution was presented with the ATI Graphics Ultra/Vantage cards, which combined an ATI 8514 Ultra and VGA Wonder+ into a single card. The Mach32 chip was the follow-up to the Mach8, which finally featured an integrated VGA core, true colour support and a 64-bit datapath to internal memory.
The Personal Computer Series, or PC Series, was IBM's follow-up to the Personal System/2 and PS/ValuePoint. Announced in October 1994 and withdrawn in October 2000, it was replaced by the IBM NetVista, apart from the Pentium Pro-based PC360 and PC365, which were replaced by the IBM IntelliStation.
{{cite web}}
: CS1 maint: archived copy as title (link)