The System Management Bus (SMBus or SMB) is a single-ended simple two-wire bus for the purpose of lightweight communication. Most commonly it is found in chipsets of computer motherboards for communication with the power source for ON/OFF instructions. The exact functionality and hardware interfaces vary with vendors.
It is derived from I²C for communication with low-bandwidth devices on a motherboard, especially power related chips such as a laptop's rechargeable battery subsystem (see Smart Battery System and ACPI). [1] Other devices might include external master hosts, temperature sensor, fan or voltage sensors, lid switches, clock generator, and RGB lighting. Peripheral Component Interconnect (PCI) add-in cards may connect to an SMBus segment.
A device can provide manufacturer information, indicate its model/part number, save its state for a suspend event, report different types of errors, accept control parameters, return status over SMBus, and poll chipset registers. The SMBus is generally not user configurable or accessible. [1] Although SMBus devices usually can't identify their functionality, a new PMBus coalition has extended SMBus to include conventions allowing that.
The SMBus was defined by Intel and Duracell in 1994. [2] It carries clock, data, and instructions and is based on Philips' I²C serial bus protocol. [1] Its clock frequency range is 10 kHz to 100 kHz. (PMBus extends this to 400 kHz.) Its voltage levels and timings are more strictly defined than those of I²C, but devices belonging to the two systems are often successfully mixed on the same bus. [ citation needed ]
SMBus is used as an interconnect in several platform management standards including: Alert Standard Format (ASF), Desktop and mobile Architecture for System Hardware (DASH), Intelligent Platform Management Interface (IPMI).
SMBus is used to access DRAM configuration information as part of serial presence detect (SPD). SMBus has grown into a wide variety of system enumeration use cases other than power management.
While SMBus is derived from I²C, there are several major differences between the specifications of the two busses in the areas of electricals, timing, protocols and operating modes. [3] [4] [5] [6]
When mixing devices, the I²C specification defines the input levels to be 30% and 70% of the supply voltage VDD, [5] : 9 which may be 5 V, 3.3 V, or any other value. Instead of relating the bus input levels to VDD, SMBus defines them to be fixed. SMBus 2.0 defines VIL,max at 0.8 V and VIH,min at 2.1 V, and supports a VDD ranging from 3 to 5 V, while in SMBus 3.0, the levels are defined at 0.8 and 1.35 V, with a VDD ranging from 1.8 to 5 V. [4]
SMBus 2.0 defines a ‘High Power’ class that includes a 4 mA sink current that cannot be driven by I²C chips unless the pull-up resistor is sized to I²C-bus levels.
NXP devices have a higher power set of electrical characteristics than SMBus 1.0. The main difference is the current sink capability with VOL = 0.4 V.
SMBus ‘high power’ devices and I²C-bus devices will work together if the pull-up resistor is sized for 3 mA.
The SMBus clock is defined from 10 to 100 kHz while I²C can be 0–100 kHz, 0–400 kHz, 0–1 MHz and 0–3.4 MHz, depending on the mode. This means that an I²C bus running at less than 10 kHz will not be SMBus compliant since the SMBus devices may time out. Many SMBus devices will however support lower frequencies.
SMBus 3.0 adds 400 kHz and 1 MHz bus speeds.
There are the following differences in the use of the NACK bus signaling: In I²C, a slave receiver is allowed to not acknowledge the slave address, if for example it's unable to receive because it's performing some real time task. SMBus requires devices to acknowledge their own address always, as a mechanism to detect a removable device's presence on the bus (battery, docking station, etc.)
I²C specifies that a slave device, although it may acknowledge its own address, may decide, some time later in the transfer, that it cannot receive any more data bytes. I²C specifies that the device may indicate this by generating the not acknowledge on the first byte to follow.
Other than to indicate a slave's device-busy condition, SMBus also uses the NACK mechanism to indicate the reception of an invalid command or datum. Since such a condition may occur on the last byte of the transfer, it is required that SMBus devices have the ability to generate the not acknowledge after the transfer of each byte and before the completion of the transaction. This is important because SMBus does not provide any other resend signaling. This difference in the use of the NACK signaling has implications on the specific implementation of the SMBus port, especially in devices that handle critical system data such as the SMBus host and the SBS components.
Each message transaction on SMBus follows the format of one of the defined SMBus protocols. The SMBus protocols are a subset of the data transfer formats defined in the I²C specifications. I²C devices that can be accessed through one of the SMBus protocols are compatible with the SMBus specifications. I²C devices that do not adhere to these protocols cannot be accessed by standard methods as defined in the SMBus and Advanced Configuration and Power Interface (ACPI) specifications.
The SMBus uses I²C hardware and I²C hardware addressing, but adds second-level software for building special systems. In particular its specifications include an Address Resolution Protocol that can make dynamic address allocations. Dynamic reconfiguration of the hardware and software allow bus devices to be ‘hot-plugged’ and used immediately, without restarting the system. The devices are recognized automatically and assigned unique addresses. This advantage results in a plug-and-play user interface. In both those protocols there is a very useful distinction made between a System Host and all the other devices in the system that can have the names and functions of masters or slaves.
In the context of motherboard PCI Express slots, the PCIe Electromechanical Specification expects ARP to be provided for the SMBus pins. However, because ARP is marked "optional" in the SMBus specification, it's commonly left unimplemented. [7]
SMBus has a time-out feature which resets devices if a communication takes too long. This explains the minimum clock frequency of 10 kHz to prevent locking up the bus. I²C can be a ‘DC’ bus, meaning that a slave device stretches the master clock when performing some routine while the master is accessing it. This will notify to the master that the slave is busy but does not want to lose the communication. The slave device will allow continuation after its task is complete. There is no limit in the I²C-bus protocol as to how long this delay can be, whereas for an SMBus system, it would be limited to 35 ms. The SMBus protocol just assumes that if something takes too long, then it means that there is a problem on the bus and that all devices must reset in order to clear this mode. Slave devices are not then allowed to hold the clock LOW too long.
SMBus 1.1 and later define optional Packet Error Checking (PEC). In that mode, a PEC (packet error code) byte is appended at the end of each transaction. The byte is calculated as CRC-8 checksum, calculated over the entire message including the address and read/write bit. The polynomial used is x8+x2+x+1 (the CRC-8-ATM HEC algorithm, initialized to zero). [8] [9] [10]
The SMBus has an extra optional shared interrupt signal called SMBALERT#, which can be used by slaves to tell the host to ask its slaves about events of interest. SMBus also defines a less common "Host Notify Protocol", providing similar notifications but passing more data and building on the I²C multi-master mode.
SMBus devices are supported by FreeBSD, OpenBSD, NetBSD, DragonFly BSD, Linux, Windows 98 and newer and Windows CE.
DDR5 introduces I3C for its presence detect communication, replacing SMBus. [11]
PCI express devices commonly use SMBus as a "out-of-band management port". However, device vendors frequently use SMBus multiplexers (Mux) to manage address clashes (which are in turn caused by them not implementing the Address Resolution Protocol), causing link interruptions that break Management Component Transport Protocol and other protocols when the Mux switches targets. To solve this problem, SNIA's Enterprise and Data Center Standard Form Factor version 3.1 (January 2023) describes a way to use I3C basic over the PCIe two-wire interface. [7] NVM Express 2.1 (August 2024) is also reworded to allow the use of I3C, "to match the new conventions used by SNIA SFF TA's EDSFF and PCI-SIG specifications for I3C". [12]
Accelerated Graphics Port (AGP) is a parallel expansion card standard, designed for attaching a video card to a computer system to assist in the acceleration of 3D computer graphics. It was originally designed as a successor to PCI-type connections for video cards. Since 2004, AGP was progressively phased out in favor of PCI Express (PCIe), which is serial, as opposed to parallel; by mid-2008, PCI Express cards dominated the market and only a few AGP models were available, with GPU manufacturers and add-in board partners eventually dropping support for the interface in favor of PCI Express.
In computer architecture, a bus is a communication system that transfers data between components inside a computer, or between computers. This expression covers all related hardware components and software, including communication protocols.
Industry Standard Architecture (ISA) is the 16-bit internal bus of IBM PC/AT and similar computers based on the Intel 80286 and its immediate successors during the 1980s. The bus was (largely) backward compatible with the 8-bit bus of the 8088-based IBM PC, including the IBM PC/XT as well as IBM PC compatibles.
Peripheral Component Interconnect (PCI) is a local computer bus for attaching hardware devices in a computer and is part of the PCI Local Bus standard. The PCI bus supports the functions found on a processor bus but in a standardized format that is independent of any given processor's native bus. Devices connected to the PCI bus appear to a bus master to be connected directly to its own bus and are assigned addresses in the processor's address space. It is a parallel bus, synchronous to a single bus clock. Attached devices can take either the form of an integrated circuit fitted onto the motherboard or an expansion card that fits into a slot. The PCI Local Bus was first implemented in IBM PC compatibles, where it displaced the combination of several slow Industry Standard Architecture (ISA) slots and one fast VESA Local Bus (VLB) slot as the bus configuration. It has subsequently been adopted for other computer types. Typical PCI cards used in PCs include: network cards, sound cards, modems, extra ports such as Universal Serial Bus (USB) or serial, TV tuner cards and hard disk drive host adapters. PCI video cards replaced ISA and VLB cards until rising bandwidth needs outgrew the abilities of PCI. The preferred interface for video cards then became Accelerated Graphics Port (AGP), a superset of PCI, before giving way to PCI Express.
Universal Serial Bus (USB) is an industry standard, developed by USB Implementers Forum (USB-IF), that allows data exchange and delivery of power between many types of electronics. It specifies its architecture, in particular its physical interface, and communication protocols for data transfer and power delivery to and from hosts, such as personal computers, to and from peripheral devices, e.g. displays, keyboards, and mass storage devices, and to and from intermediate hubs, which multiply the number of a host's ports.
I2C (Inter-Integrated Circuit; pronounced as “eye-squared-see” or “eye-two-see”), alternatively known as I2C or IIC, is a synchronous, multi-controller/multi-target (historically termed as multi-master/multi-slave), single-ended, serial communication bus invented in 1982 by Philips Semiconductors. It is widely used for attaching lower-speed peripheral integrated circuits (ICs) to processors and microcontrollers in short-distance, intra-board communication.
PCI Express, officially abbreviated as PCIe or PCI-e, is a high-speed serial computer expansion bus standard, meant to replace the older PCI, PCI-X and AGP bus standards. It is the common motherboard interface for personal computers' graphics cards, capture cards, sound cards, hard disk drive host adapters, SSDs, Wi-Fi, and Ethernet hardware connections. PCIe has numerous improvements over the older standards, including higher maximum system bus throughput, lower I/O pin count and smaller physical footprint, better performance scaling for bus devices, a more detailed error detection and reporting mechanism, and native hot-swap functionality. More recent revisions of the PCIe standard provide hardware support for I/O virtualization.
Serial Peripheral Interface (SPI) is a de facto standard for synchronous serial communication, used primarily in embedded systems for short-distance wired communication between integrated circuits.
Display Data Channel (DDC) is a collection of protocols for digital communication between a computer display and a graphics adapter that enable the display to communicate its supported display modes to the adapter and that enable the computer host to adjust monitor parameters, such as brightness and contrast.
The Arm Advanced Microcontroller Bus Architecture (AMBA) is an open-standard, on-chip interconnect specification for the connection and management of functional blocks in system-on-a-chip (SoC) designs. It facilitates development of multi-processor designs with large numbers of controllers and components with a bus architecture. Since its inception, the scope of AMBA has, despite its name, gone far beyond microcontroller devices. Today, AMBA is widely used on a range of ASIC and SoC parts including applications processors used in modern portable mobile devices like smartphones. AMBA is a registered trademark of Arm Ltd.
The Low Pin Count (LPC) bus is a computer bus used on IBM-compatible personal computers to connect low-bandwidth devices to the CPU, such as the BIOS ROM, "legacy" I/O devices, and Trusted Platform Module (TPM). "Legacy" I/O devices usually include serial and parallel ports, PS/2 keyboard, PS/2 mouse, and floppy disk controller.
In computing, serial presence detect (SPD) is a standardized way to automatically access information about a memory module. Earlier 72-pin SIMMs included five pins that provided five bits of parallel presence detect (PPD) data, but the 168-pin DIMM standard changed to a serial presence detect to encode more information.
EtherCAT is an Ethernet-based fieldbus system developed by Beckhoff Automation. The protocol is standardized in IEC 61158 and is suitable for both hard and soft real-time computing requirements in automation technology.
IEBus is a communication bus specification "between equipments within a vehicle or a chassis" of Renesas Electronics. It defines OSI model layer 1 and layer 2 specification. IEBus is mainly used for car audio and car navigations, which established de facto standard in Japan, though SAE J1850 is major in United States.
IEBus is also used in some vending machines, which major customer is Fuji Electric. Each button on the vending machine has an IEBus ID, i.e. has a controller.
Detailed specification is disclosed to licensees only, but protocol analyzers are provided from some test equipment vendors. Its modulation method is PWM with 6.00 MHz base clock originally, but most of automotive customers use 6.291 MHz, and physical layer is a pair of differential signalling harness. Its physical layer adopts half-duplex, asynchronous, and multi-master communication with carrier-sense multiple access with collision detection (CSMA/CD) for medium access control. It allows for up to fifty units on one bus over a maximum length of 150 meters. Two differential signalling lines are used with Bus+ / Bus− naming, sometimes labeled as Data(+) / Data(−).
The Power Management Bus (PMBus) is a variant of the System Management Bus (SMBus) which is targeted at digital management of power supplies. Like SMBus, it is a relatively slow speed two wire communications protocol based on I²C. Unlike either of those standards, it defines a substantial number of domain-specific commands rather than just saying how to communicate using commands defined by the user.
Universal Serial Bus 3.0, marketed as SuperSpeed USB, is the third major version of the Universal Serial Bus (USB) standard for interfacing computers and electronic devices. It was released in November 2008. The USB 3.0 specification defined a new architecture and protocol, named SuperSpeed, which included a new lane for providing full-duplex data transfers that physically required five additional wires and pins, while also adding a new signal coding scheme, and preserving the USB 2.0 architecture and protocols and therefore keeping the original four pins and wires for the USB 2.0 backward-compatibility, resulting in nine wires in total and nine or ten pins at connector interfaces. The new transfer rate, marketed as SuperSpeed USB (SS), can transfer signals at up to 5 Gbit/s with raw data rate of 500 MB/s after encoding overhead, which is about 10 times faster than High-Speed. USB 3.0 Type-A and B connectors are usually blue, to distinguish them from USB 2.0 connectors, as recommended by the specification, and by the initials SS.
NVM Express (NVMe) or Non-Volatile Memory Host Controller Interface Specification (NVMHCIS) is an open, logical-device interface specification for accessing a computer's non-volatile storage media usually attached via the PCI Express bus. The initial NVM stands for non-volatile memory, which is often NAND flash memory that comes in several physical form factors, including solid-state drives (SSDs), PCIe add-in cards, and M.2 cards, the successor to mSATA cards. NVM Express, as a logical-device interface, has been designed to capitalize on the low latency and internal parallelism of solid-state storage devices.
Management Component Transport Protocol (MCTP) is a protocol designed by the Distributed Management Task Force (DMTF) to support communications between different intelligent hardware components that make up a platform management subsystem, providing monitoring and control functions inside a managed computer system. This protocol is independent of the underlying physical bus properties, as well as the data link layer messaging used on the bus. The MCTP communication model includes a message format, transport description, message exchange patterns, and operational endpoint characteristics.
I3C, also known as SenseWire, is a specification to enable communication between computer chips by defining the electrical connection between the chips and signaling patterns to be used. Short for "Improved Inter Integrated Circuit", the standard defines the electrical connection between the chips to be a two wire, shared (multidrop), serial data bus, one wire (SCL
) being used as a clock to define the sampling times, the other wire (SDA
) being used as a data line whose voltage can be sampled. The standard defines a signalling protocol in which multiple chips can control communication and thereby act as the bus controller.