Daisy chain (electrical engineering)

Last updated
A graphic representation of a daisy chain Daisy chain.svg
A graphic representation of a daisy chain
A daisy garland, a chain of daisy flowers Daisy chain.JPG
A daisy garland, a chain of daisy flowers
A series of devices connected in a daisy chain layout Hexbus.jpg
A series of devices connected in a daisy chain layout

In electrical and electronic engineering, a daisy chain is a wiring scheme in which multiple devices are wired together in sequence or in a ring, [1] similar to a garland of daisy flowers. Daisy chains may be used for power, analog signals, digital data, or a combination thereof.

Contents

The term daisy chain may refer either to large scale devices connected in series, such as a series of power strips plugged into each other to form a single long line of strips, or to the wiring patterns embedded inside of devices. Other examples of devices which can be used to form daisy chains are those based on Universal Serial Bus (USB), FireWire, Thunderbolt and Ethernet cables.

Signal transmission

For analog signals, connections usually consist of a simple electrical bus and, especially in the case of a chain of many devices, may require the use of one or more repeaters or amplifiers within the chain to counteract attenuation (the natural loss of energy in such a system). Digital signals between devices may also travel on a simple electrical bus, in which case a bus terminator may be needed on the last device in the chain. However, unlike analog signals, because digital signals are discrete, they may also be electrically regenerated, but not modified, by any device in the chain.

Types

Computer hardware

Some hardware can be attached to a computing system in a daisy chain configuration by connecting each component to another similar component, rather than directly to the computing system that uses the component. Only the last component in the chain directly connects to the computing system. For example, chaining multiple components that each have a UART port to each other. The components must also behave cooperatively. e.g., only one seizes the communications bus at a time.

Network topology

Any particular daisy chain forms one of two network topologies:

System access

Users can daisy chain computing sessions together. Using services such as Telnet or SSH, the user creates a session on a second computer via Telnet, and from the second session, Telnets to a third and so on. Another typical example is the "terminal session inside a terminal session" using Remote Desktop Protocol. Reasons to create daisy chains include connecting to a system on a non-routed network via a gateway system, preserving sessions on the initial computer while working on a second computer, to save bandwidth or improve connectivity on an unstable network by first connecting to a better connected machine. Another reason for creating a daisy chain is to camouflage activity while engaged in cybercrime.

Related Research Articles

<span class="mw-page-title-main">Bus (computing)</span> Data transfer channel connecting parts of a computer

In computer architecture, a bus is a communication system that transfers data between components inside a computer or between computers. It encompasses both hardware and software, including communication protocols. At its core, a bus is a shared physical pathway, typically composed of wires, traces on a circuit board, or busbars, that allows multiple devices to communicate. To prevent conflicts and ensure orderly data exchange, buses rely on a communication protocol to manage which device can transmit data at a given time.

<span class="mw-page-title-main">USB</span> Standard for computer data connections

Universal Serial Bus (USB) is an industry standard, developed by USB Implementers Forum (USB-IF), that allows data exchange and delivery of power between many types of electronics. It specifies its architecture, in particular its physical interface, and communication protocols for data transfer and power delivery to and from hosts, such as personal computers, to and from peripheral devices, e.g. displays, keyboards, and mass storage devices, and to and from intermediate hubs, which multiply the number of a host's ports.

<span class="mw-page-title-main">Network topology</span> Arrangement of a communication network

Network topology is the arrangement of the elements of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses and computer networks.

<span class="mw-page-title-main">Embedded system</span> Computer system with a dedicated function

An embedded system is a specialized computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is embedded as part of a complete device often including electrical or electronic hardware and mechanical parts. Because an embedded system typically controls physical operations of the machine that it is embedded within, it often has real-time computing constraints. Embedded systems control many devices in common use. In 2009, it was estimated that ninety-eight percent of all microprocessors manufactured were used in embedded systems.

<span class="mw-page-title-main">AVR microcontrollers</span> Family of microcontrollers

AVR is a family of microcontrollers developed since 1996 by Atmel, acquired by Microchip Technology in 2016. These are modified Harvard architecture 8-bit RISC single-chip microcontrollers. AVR was one of the first microcontroller families to use on-chip flash memory for program storage, as opposed to one-time programmable ROM, EPROM, or EEPROM used by other microcontrollers at the time.

<span class="mw-page-title-main">System on a chip</span> Micro-electronic component

A system on a chip or system-on-chip is an integrated circuit that integrates most or all components of a computer or electronic system. These components usually include an on-chip central processing unit (CPU), memory interfaces, input/output devices and interfaces, and secondary storage interfaces, often alongside other components such as radio modems and a graphics processing unit (GPU) – all on a single substrate or microchip. SoCs may contain digital and also analog, mixed-signal and often radio frequency signal processing functions.

<span class="mw-page-title-main">DMX512</span> Digital communication network standard for controlling stage lighting and effects

DMX512 is a standard for digital communication networks that are commonly used to control lighting and effects. It was originally intended as a standardized method for controlling stage lighting dimmers, which, prior to DMX512, had employed various incompatible proprietary protocols. It quickly became the primary method for linking controllers to dimmers and special effects devices such as fog machines and intelligent lights.

Serial Peripheral Interface (SPI) is a de facto standard for synchronous serial communication, used primarily in embedded systems for short-distance wired communication between integrated circuits.

<span class="mw-page-title-main">Electrical termination</span> Transmission line impedance matching

In electronics, electrical termination is the practice of ending a transmission line with a device that matches the characteristic impedance of the line. Termination prevents signals from reflecting off the end of the transmission line. Reflections at the ends of unterminated transmission lines cause distortion, which can produce ambiguous digital signal levels and misoperation of digital systems. Reflections in analog signal systems cause such effects as video ghosting, or power loss in radio transmitter transmission lines.

<span class="mw-page-title-main">D-subminiature</span> Type of electrical connector

The D-subminiature or D-sub is a common type of electrical connector. They are named for their characteristic D-shaped metal shield. When they were introduced, D-subs were among the smallest connectors used on computer systems.

JTAG is an industry standard for verifying designs of and testing printed circuit boards after manufacture.

In an electrical system, a ground loop or earth loop occurs when two points of a circuit are intended to have the same ground reference potential but instead have a different potential between them. This is typically caused when enough current is flowing in the connection between the two ground points to produce a voltage drop and cause the two points to be at different potentials. Current may be produced in a ground loop by electromagnetic induction.

<span class="mw-page-title-main">Automatic test equipment</span> Apparatus used in hardware testing that carries out a series of tests automatically

Automatic test equipment or automated test equipment (ATE) is any apparatus that performs tests on a device, known as the device under test (DUT), equipment under test (EUT) or unit under test (UUT), using automation to quickly perform measurements and evaluate the test results. An ATE can be a simple computer-controlled digital multimeter, or a complicated system containing dozens of complex test instruments capable of automatically testing and diagnosing faults in sophisticated electronic packaged parts or on wafer testing, including system on chips and integrated circuits.

<span class="mw-page-title-main">Boundary scan</span> Testing method on printed circuit boards

Boundary scan is a method for testing interconnects on printed circuit boards or sub-blocks inside an integrated circuit (IC). Boundary scan is also widely used as a debugging method to watch integrated circuit pin states, measure voltage, or analyze sub-blocks inside an integrated circuit.

<span class="mw-page-title-main">Terminal server</span> Device that interfaces serial hosts to a network

A terminal server connects devices with a serial port to a local area network (LAN). Products marketed as terminal servers can be very simple devices that do not offer any security functionality, such as data encryption and user authentication. The primary application scenario is to enable serial devices to access network server applications, or vice versa, where security of the data on the LAN is not generally an issue. There are also many terminal servers on the market that have highly advanced security functionality to ensure that only qualified personnel can access various servers and that any data that is transmitted across the LAN, or over the Internet, is encrypted. Usually, companies that need a terminal server with these advanced functions want to remotely control, monitor, diagnose and troubleshoot equipment over a telecommunications network.

<span class="mw-page-title-main">Adapter (computing)</span> Adapter used in computing

An adapter in regard to computing can be either a hardware component (device) or software that allows two or more incompatible devices to be linked together for the purpose of transmitting and receiving data. Given an input, an adapter alters it in order to provide a compatible connection between the components of a system. Both software and hardware adapters are used in many different devices such as mobile phones, personal computers, servers and telecommunications networks for a wide range of purposes. Some adapters are built into devices, while the others can be installed on a computer's motherboard or connected as external devices.

<span class="mw-page-title-main">Electronic circuit</span> Electrical circuit with active components

An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow. It is a type of electrical circuit. For a circuit to be referred to as electronic, rather than electrical, generally at least one active component must be present. The combination of components and wires allows various simple and complex operations to be performed: signals can be amplified, computations can be performed, and data can be moved from one place to another.

Audio connectors and video connectors are electrical or optical connectors for carrying audio or video signals. Audio interfaces or video interfaces define physical parameters and interpretation of signals. Some connectors and interfaces carry either audio only or video only, whereas others carry both, audio and video.

<span class="mw-page-title-main">IEEE 1394</span> Serial bus interface standard, also known as Firewire

IEEE 1394 is an interface standard for a serial bus for high-speed communications and isochronous real-time data transfer. It was developed in the late 1980s and early 1990s by Apple in cooperation with a number of companies, primarily Sony and Panasonic. It is most commonly known by the name FireWire (Apple), though other brand names exist such as i.LINK (Sony), and Lynx.

<span class="mw-page-title-main">USB-C</span> 24-pin USB connector system

USB-C, or USB Type-C, is a 24-pin connector that supersedes previous USB connectors and can carry audio, video, and other data, to connect to monitors or external drives. It can also provide and receive power, to power, e.g., a laptop or a mobile phone. It is used not only by USB technology, but also by other protocols, including Thunderbolt, PCIe, HDMI, DisplayPort, and others. It is extensible to support future protocols.

References

  1. maxim-ic.com - Electrical Engineering Glossary Definition for Daisy Chain
  2. "ViaTAP user's manual, chapter Design guidelines for use with ViaTAP" (PDF). Archived from the original (PDF) on 2017-02-22. Retrieved 2009-01-08.
  3. "Thunderbolt™ for Developers". Intel . Retrieved 2020-04-02.
  4. IR3508Z data sheet (PDF), archived from the original (PDF) on 2016-03-03, The last phase IC is connected back to ... the control IC to complete the daisy chain loop
  5. Joel Konicek; Karen Little (1997). Security, ID Systems and Locks: The Book on Electronic Access Control. p. 170: daisy chain loop illustration.