S/PDIF (Sony/Philips Digital Interface) [1] [2] is a type of digital audio interface used in consumer audio equipment to output audio over relatively short distances. The signal is transmitted over either a coaxial cable using RCA or BNC connectors, or a fibre-optic cable using TOSLINK connectors. S/PDIF interconnects components in home theaters and other digital high-fidelity systems.
S/PDIF is based on the AES3 interconnect standard. [3] S/PDIF can carry two channels of uncompressed PCM audio or compressed 5.1 surround sound; it cannot support lossless surround formats that require greater bandwidth. [4]
S/PDIF is a data link layer protocol as well as a set of physical layer specifications for carrying digital audio signals over either optical or electrical cable. The name stands for Sony/Philips Digital Interconnect Format but is also known as Sony/Philips Digital Interface. Sony and Philips were the primary designers of S/PDIF. S/PDIF is standardized in IEC 60958 as IEC 60958 type II (IEC 958 before 1998). [5]
A common use is to carry two channels of uncompressed digital audio from a CD player to an amplifying receiver.
The S/PDIF interface is also used to carry compressed digital audio for surround sound as defined by the IEC 61937 standard. This mode is used to connect the output of a Blu-ray, DVD player or computer, via optical or coax, to a home theatre amplifying receiver that supports Dolby Digital or DTS Digital Surround decoding.
S/PDIF was developed at the same time as the main standard, AES3, used to interconnect professional audio equipment in the professional audio field. This resulted from the desire of the various stakeholders to have at least sufficient similarities between the two interfaces to allow the use of the same, or very similar, designs for interfacing ICs. [6] S/PDIF is nearly identical at the protocol level, [lower-alpha 1] but uses either coaxial cable (with RCA connectors) or optical fibre (TOSLINK; i.e., JIS F05 or EIAJ optical), both of which cost less than the XLR connection used by AES3. The RCA connectors are typically colour-coded orange to differentiate from other RCA connector uses such as composite video. S/PDIF uses 75 Ω coaxial cable while AES3 uses 110 Ω balanced twisted pair.
Signals transmitted over consumer-grade TOSLINK connections are identical in content to those transmitted over coaxial connectors. Optical provides electrical isolation that can help address ground loop issues in systems. The electrical connection can be more robust and supports longer connections. [7]
AES3 | S/PDIF | |||
---|---|---|---|---|
Balanced | Unbalanced | Copper | Optical | |
Cabling | 110 Ω STP | 75 Ω coaxial | 75 Ω coaxial | Optical fibre |
Connector | 3-pin XLR | BNC | RCA or BNC | TOSLINK |
Output level | 2–7 V peak to peak | 1.0–1.2 V peak to peak | 0.5–0.6 V peak to peak | — |
Min. input level | 0.2 V | 0.32 V | 0.2 V | — |
Max. distance | 1000 m | 100 m | 10 m | |
Modulation | Biphase mark code | |||
Subcode information | ASCII id. text | SCMS copy protection info. | ||
Audio bit depth | 24 bits | 20 bits (24 bits, optionally)[ citation needed ] |
S/PDIF is used to transmit digital signals in a number of formats, the most common being the 48 kHz sample rate format (used in Digital Audio Tape) and the 44.1 kHz format, used in CD audio. In order to support both sample rates, as well as others that might be needed, the format has no defined bit rate. Instead, the data is sent using biphase mark code, which has either one or two transitions for every bit, allowing the original word clock to be extracted from the signal itself.
S/PDIF protocol differs from AES3 only in the channel status bits; see AES3 § Protocol for the high-level view. Both protocols group 192 samples into an audio block, and transmit one channel status bit per sample, providing one 192-bit channel status word per channel per audio block. For S/PDIF, the 192-bit status word is identical between the two channels and is divided into 12 words of 16 bits each, with the first 16 bits being a control code.
Byte | Bit | Unset (0) | Set (1) |
---|---|---|---|
0 | 0 | Consumer (S/PDIF) | Professional (AES3) (changes meaning to AES3 channel status word) |
1 | Normal PCM | Compressed data | |
2 | Copy restrict | Copy permit | |
3 | 2 channels | 4 channels | |
4 | — | — | |
5 | No pre-emphasis | Pre-emphasis 50/15 | |
6–7 | Mode, defines subsequent bytes; values other than zero are undefined. | ||
1 | 0–6 | Audio source category indicating the type of source equipment (general, CD-DA, DVD, etc.) | |
7 | L-bit, original or copy [upper-alpha 1] | ||
2 | 0–3 | Source number | |
4–7 | Channel number | ||
3 | 0–3 | Sampling frequency: 00002: 44.1 kHz, 01002: 48 kHz, 11002: 32 kHz | |
4–5 | Clock accuracy: 102: 50ppm,002: 1100ppm, 012: variable pitch (requires compatible receiver) | ||
6–7 | Undefined | ||
4 | 0 | Word length 20 bits | Word length 24 bits |
1–3 | Sample length (0: undefined, 1–4: word length minus 1-4 bits, 5: full word length) | ||
4–7 | Undefined | ||
5–10 | 0-7 | EAN-13 code (possibly in binary-coded decimal) | |
11 | 0-3 | ||
4–7 | Undefined; padding on 13-digit EAN code | ||
12–13 | 0-7 | Undefined | |
14 | 0–3 | ||
4-7 | ISRC (encoding unclear; ISRC is 2 alphabetic, 3 alphanumeric and 7 numeric, which is 262 × 363 × 107 ≈ 248.164 and so obviously fits into 7.5 bytes, but a naive 5 ASCII + 7 BCD would be 8.5 bytes) | ||
15–21 | 0–7 | ||
22–23 | 0–7 | Undefined |
S/PDIF is meant to be used for transmitting 20-bit audio data streams plus other related information. S/PDIF can also transport 24-bit samples by way of four extra bits; however, not all equipment supports this, and these extra bits may be ignored.
To transmit sources with less than 20 bits of sample accuracy, the superfluous bits will be set to zero, and the 4:1–3 bits (sample length) are set accordingly.
IEC 61937 defines a way to transmit compressed, multi-channel data over S/PDIF. [10]
A number of encodings are available over IEC 61937, including Dolby AC-3/E-AC-3, Dolby TrueHD, MP3, AAC, ATRAC, DTS, and WMA Pro. [11] [12]
The receiver does not control the data rate, so it must avoid bit slip by synchronizing its reception with the source clock. Many S/PDIF implementations cannot fully decouple the final signal from influence of the source or the interconnect. Specifically, the process of clock recovery used to synchronize reception may produce jitter. [13] [14] [15] If the DAC does not have a stable clock reference then noise will be introduced into the resulting analog signal. However, receivers can implement various strategies that limit this influence. [15] [16]
Digital audio is a representation of sound recorded in, or converted into, digital form. In digital audio, the sound wave of the audio signal is typically encoded as numerical samples in a continuous sequence. For example, in CD audio, samples are taken 44,100 times per second, each with 16-bit resolution. Digital audio is also the name for the entire technology of sound recording and reproduction using audio signals that have been encoded in digital form. Following significant advances in digital audio technology during the 1970s and 1980s, it gradually replaced analog audio technology in many areas of audio engineering, record production and telecommunications in the 1990s and 2000s.
SCART is a French-originated standard and associated 21-pin connector for connecting audio-visual (AV) equipment. The name SCART comes from Syndicat des Constructeurs d'Appareils Radiorécepteurs et Téléviseurs, "Radio and Television Receiver Manufacturers' Association", the French organisation that created the connector in the mid-1970s. The related European standard EN 50049 was refined and published in 1978 by CENELEC, calling it péritelevision, but it is commonly called by the abbreviation péritel in French.
Dolby Digital, originally synonymous with Dolby AC-3, is the name for a family of audio compression technologies developed by Dolby Laboratories. Called Dolby Stereo Digital until 1995, it is lossy compression. The first use of Dolby Digital was to provide digital sound in cinemas from 35 mm film prints. It has since also been used for TV broadcast, radio broadcast via satellite, digital video streaming, DVDs, Blu-ray discs and game consoles.
AES3 is a standard for the exchange of digital audio signals between professional audio devices. An AES3 signal can carry two channels of pulse-code-modulated digital audio over several transmission media including balanced lines, unbalanced lines, and optical fiber.
DVD-Audio is a digital format for delivering high-fidelity audio content on a DVD. DVD-Audio uses most of the storage on the disc for high-quality audio and is not intended to be a video delivery format.
Serial digital interface (SDI) is a family of digital video interfaces first standardized by SMPTE in 1989. For example, ITU-R BT.656 and SMPTE 259M define digital video interfaces used for broadcast-grade video. A related standard, known as high-definition serial digital interface (HD-SDI), is standardized in SMPTE 292M; this provides a nominal data rate of 1.485 Gbit/s.
In digital audio electronics, a word clock or wordclock is a clock signal used to synchronise other devices, such as digital audio tape machines and compact disc players, which interconnect via digital audio signals. Word clock is so named because it clocks each audio sample. Samples are represented in data words.
Inter-Integrated Circuit Sound is a serial interface protocol for transmitting two-channel, digital audio as pulse-code modulation (PCM) between integrated circuit (IC) components of an electronic device. An I²S bus separates clock and serial data signals, resulting in simpler receivers than those required for asynchronous communications systems that need to recover the clock from the data stream. Alternatively, I²S is spelled I2S or IIS. Despite a similar name, I²S is unrelated to I²C.
AES47 is a standard which describes a method for transporting AES3 professional digital audio streams over Asynchronous Transfer Mode (ATM) networks.
Dolby Digital Plus, also known as Enhanced AC-3, is a digital audio compression scheme developed by Dolby Labs for the transport and storage of multi-channel digital audio. It is a successor to Dolby Digital (AC-3), and has a number of improvements over that codec, including support for a wider range of data rates, an increased channel count, and multi-program support, as well as additional tools (algorithms) for representing compressed data and counteracting artifacts. Whereas Dolby Digital (AC-3) supports up to five full-bandwidth audio channels at a maximum bitrate of 640 kbit/s, E-AC-3 supports up to 15 full-bandwidth audio channels at a maximum bitrate of 6.144 Mbit/s.
Asynchronous Serial Interface, or ASI, is a method of carrying an MPEG Transport Stream (MPEG-TS) over 75-ohm copper coaxial cable or optical fiber. It is popular in the television industry as a means of transporting broadcast programs from the studio to the final transmission equipment before it reaches viewers sitting at home.
SMPTE 292 is a digital video transmission line standard published by the Society of Motion Picture and Television Engineers (SMPTE). This technical standard is usually referred to as HD-SDI; it is part of a family of standards that define a serial digital interface based on a coaxial cable, intended to be used for transport of uncompressed digital video and audio in a television studio environment.
Multichannel Audio Digital Interface (MADI) standardized as AES10 by the Audio Engineering Society (AES) defines the data format and electrical characteristics of an interface that carries multiple channels of digital audio. The AES first documented the MADI standard in AES10-1991 and updated it in AES10-2003 and AES10-2008. The MADI standard includes a bit-level description and has features in common with the two-channel AES3 interface.
A Multichannel Audio Serial Port (McASP) is a communication peripheral in digital signal processor (DSP) and microcontroller unit (MCU) components from Texas Instruments.
The ADAT Lightpipe, officially the ADAT Optical Interface, is a standard for the transfer of digital audio between equipment. It was originally developed by Alesis but has since become widely accepted, with many third party hardware manufacturers including Lightpipe interfaces on their equipment. The protocol has become so popular that the term ADAT is now often used to refer to the transfer standard rather than to the Alesis Digital Audio Tape itself.
An audio signal is a representation of sound, typically using either a changing level of electrical voltage for analog signals, or a series of binary numbers for digital signals. Audio signals have frequencies in the audio frequency range of roughly 20 to 20,000 Hz, which corresponds to the lower and upper limits of human hearing. Audio signals may be synthesized directly, or may originate at a transducer such as a microphone, musical instrument pickup, phonograph cartridge, or tape head. Loudspeakers or headphones convert an electrical audio signal back into sound.
Audio connectors and video connectors are electrical or optical connectors for carrying audio or video signals. Audio interfaces or video interfaces define physical parameters and interpretation of signals. For digital audio and digital video, this can be thought of as defining the physical layer, data link layer, and most or all of the application layer. For analog audio and analog video these functions are all represented in a single signal specification like NTSC or the direct speaker-driving signal of analog audio.
TOSLINK is a standardized optical fiber connector system. Generically known as optical audio, the most common use of the TOSLINK optical fiber connector is in consumer audio equipment in which the digital optical socket carries (transmits) a stream of digital audio signals from audio equipment to an AV receiver that can decode two channels of uncompressed, pulse-code modulated (PCM) audio; or decode compressed 5.1/7.1 surround sound audio signals, such as Dolby Digital and DTS. Unlike an HDMI connector cable, a TOSLINK optical fiber connector does not possess the bandwidth capacity to carry the uncompressed audio signals of Dolby TrueHD and of DTS-HD Master Audio; nor carry more than two channels of PCM audio.
HDBaseT is a consumer electronic (CE) and commercial connectivity standard for transmission of uncompressed ultra-high-definition video, digital audio, DC power, Ethernet, USB 2.0, and other control communication over a single category cable up to 100 m (328 ft) in length, terminated using 8P8C modular connectors. The conductors, cable, and connectors are as used in Ethernet networks, but are not otherwise exchangeable. HDBaseT technology is promoted and advanced by the HDBaseT Alliance.
AES50 is an Audio over Ethernet protocol for multichannel digital audio. It is defined in the AES50-2011 standard for High-resolution multi-channel audio interconnection (HRMAI).
...connections such as S/PDIF do not have the bandwidth necessary to deliver uncompressed surround sound...
The components of a sound card are: [...] An SPDIF digital output (Sony Philips Digital Interface, also known as S/PDIF or S-PDIF or IEC 958 or IEC 60958 since 1998). This is an output line that sends digitised audio data to a digital amplifier using a coaxial cable with RCA connectors at the ends.
{{cite journal}}
: Cite journal requires |journal=
(help) AES Convention 121, paper 6948