This article needs additional citations for verification .(June 2012) |
Enhanced Industry Standard Architecture | |
Year created | 1988 |
---|---|
Created by | Gang of Nine |
Superseded by | PCI (1993) |
Width in bits | 32 |
No. of devices | 1 per slot |
Speed | 8.33 MHz Half-duplex 33 MB/s [1] |
Style | Parallel |
Hotplugging interface | No |
External interface | No |
The Extended Industry Standard Architecture (frequently known by the acronym EISA and pronounced "eee-suh") is a bus standard for IBM PC compatible computers. It was announced in September 1988 by a consortium of PC clone vendors (the Gang of Nine) as an alternative to IBM's proprietary Micro Channel architecture (MCA) in its PS/2 series. [2]
In comparison with the AT bus, which the Gang of Nine retroactively renamed to the ISA bus to avoid infringing IBM's trademark on its PC/AT computer, EISA is extended to 32 bits and allows more than one CPU to share the bus. The bus mastering support is also enhanced to provide access to 4 GB of memory. Unlike MCA, EISA can accept older ISA cards — the lines and slots for EISA are a superset of ISA. [3]
EISA was much favoured by manufacturers due to the proprietary nature of MCA, and even IBM produced some machines supporting it. It was somewhat expensive to implement (though not as much as MCA), so it never became particularly popular in desktop PCs. However, it was reasonably successful in the server market, [4] as it was better suited to bandwidth-intensive tasks such as disk access and networking. Most EISA cards produced were either SCSI or network cards. EISA was also available on some non-IBM-compatible machines such as the DEC AlphaServer, HP 9000 D-class, SGI Indigo2 and MIPS Magnum.
By the time there was a strong market need for a bus of these speeds and capabilities for desktop computers, the VESA Local Bus and later PCI filled this niche, and EISA vanished into obscurity.
The original IBM PC included five 8-bit slots, running at the system clock speed of 4.77 MHz. The PC/AT, introduced in 1984, had three 8-bit slots and five 16-bit slots, all running at the system clock speed of 6 MHz in the earlier models and 8 MHz in the last version of the computer. The 16-bit slots were a superset of the 8-bit configuration, so most 8-bit cards were able to plug into a 16-bit slot (some cards used a "skirt" design that physically interfered with the extended portion of the slot) and continue to run in 8-bit mode. One of the key reasons for the success of the IBM PC (and the PC clones that followed it) was the active ecosystem of third-party expansion cards available for the machines. IBM was restricted from patenting the bus [ by whom? ][ citation needed ] and widely published the bus specifications.
As the PC-clone industry continued to build momentum in the mid- to late-1980s, several problems with the bus began to be apparent. First, because the "AT slot" (as it was known at the time) was not managed by any central standards group, there was nothing to prevent a manufacturer from "pushing" the standard. One of the most common issues was that as PC clones became more common, PC manufacturers began increasing the processor speed to maintain a competitive advantage. Unfortunately, because the ISA bus was originally locked to the processor clock, this meant that some 286 machines had ISA buses that ran at 10, 12, or even 16 MHz. In fact, the first systems to clock the ISA bus at 8 MHz were the turbo Intel 8088 clones that clocked the processors at 8 MHz. This caused many issues with incompatibility, where a true IBM-compatible third-party card (designed for an 8 MHz or 4.77 MHz bus) might not work reliably or at all in a higher-clocked system. Most PC makers eventually decoupled the bus clock from the system clock, but there was still no standards body to "police" the industry.
As companies like Dell modified the AT bus design, [5] the architecture was so well entrenched that no single clone manufacturer had the leverage to create a standardized alternative, and there was no compelling reason for them to cooperate on a new standard. Because of this, when the first 386-based system (the Compaq Deskpro 386) was sold in 1986, it still supported 16-bit slots. Other 386 PCs followed suit, and the AT (later ISA) bus remained a part of most systems even into the late 1990s.
Meanwhile, IBM began to worry that it was losing control of the industry it had created. In 1987, IBM released the PS/2 line of computers, most of which included the MCA bus. MCA included numerous enhancements over the 16-bit AT bus, including bus mastering, burst mode, software-configurable resources, and 32-bit capabilities. However, in an effort to reassert its dominant role, IBM patented the bus and placed stringent licensing and royalty policies on its use. A few manufacturers did produce licensed MCA machines (most notably, NCR), but overall the industry balked at IBM's restrictions.
Steve Gibson proposed that clone makers adopt NuBus. [6] A group of companies led by Compaq (the Gang of Nine) created a new bus instead. This new bus was named the Extended (or Enhanced) Industry Standard Architecture, or "EISA", while the older AT bus had already been renamed Industry Standard Architecture, or "ISA". [7] This provided virtually all of the technical advantages of MCA, while remaining compatible with existing 8-bit and 16-bit cards, and (most enticing to system and card makers) minimal licensing cost.
The EISA bus slot is a two-level staggered pin system, with the upper part of the slot corresponding to the standard ISA bus pin layout. The additional features of the EISA bus are implemented on the lower part of the slot connector, using thin traces inserted into the insulating gap of the upper / ISA card card edge connector. Additionally, the lower part of the bus has five keying notches, so an ISA card with unusually long traces cannot accidentally extend down into the lower part of the slot.
Intel introduced their first EISA chipset (and also their first chipset in the modern sense of the word) as the 82350 in September 1989. [8] [9] Intel introduced a lower-cost variant as the 82350DT, announced in April 1991; it began shipping in June of that year. [10]
The first EISA computer announced was the HP Vectra 486 in October 1989. [11] The first EISA computers to hit the market were the Compaq Deskpro 486 and the SystemPro.[ citation needed ] The SystemPro, being one of the first PC-style systems designed as a network server, was built from the ground up to take full advantage of the EISA bus. It included such features as multiprocessing, hardware RAID, and bus-mastering network cards.
One of the benefits to come out of the EISA standard was a final codification of the standard to which ISA slots and cards should be held (in particular, clock speed was fixed at an industry standard of 8.33 MHz). Thus, even systems that didn't use the EISA bus gained the advantage of having the ISA standardized, which contributed to its longevity.
The Gang of Nine was the informal name given to the consortium of personal computer manufacturing companies, led by Compaq, that together created the EISA bus. The nine companies together had more than 33% market share for all PCs in 1987, compared to IBM's 27%. The Gang of Nine had an even larger share of the market for 80386-based computers, with 43% compared to IBM's 16%. Compaq was among the first clone makers after the IBM PC's debut in 1981, and had 28% of the 80386 market; [12] rival members generally acknowledged its leadership, with one stating in 1989 that within the Gang of Nine "when you have 10 people sit down before a table to write a letter to the president, someone has to write the letter. Compaq is sitting down at the typewriter". [7] The members were: [2]
Bus width | 32 bits |
Compatible with | 8-bit ISA, 16-bit ISA, 32-bit EISA |
Pins | 98 + 100 inlay |
Vcc | +5 V, −5 V, +12 V, −12 V |
Clock | 8.33 MHz |
Theoretical data rate (32-bit) | about 33 MB/s (8.33 MHz × 4 bytes) |
Usable data rate (32-bit) | about 20 MB/s |
Although the MCA bus had a slight performance advantage over EISA (bus speed of 10 MHz, compared to 8.33 MHz), EISA contained almost all of the technological benefits that MCA boasted, including bus mastering, burst mode, software-configurable resources, and 32-bit data/address buses. These brought EISA nearly to par with MCA from a performance standpoint, and EISA easily defeated MCA in industry support.
EISA replaced the tedious jumper configuration common with ISA cards with software-based configuration. Every EISA system shipped with an EISA configuration utility; this was usually a slightly customized version of the standard utilities written by the EISA chipset makers. The user would boot into this utility, either from floppy disk or on a dedicated hard-drive partition. The utility software would detect all EISA cards in the system and could configure any hardware resources (interrupts, memory ports, etc.) on any EISA card (each EISA card would include a disk with information that described the available options on the card) or on the EISA system motherboard. The user could also enter information about ISA cards in the system, allowing the utility to automatically reconfigure EISA cards to avoid resource conflicts.
Similarly, Windows 95, with its Plug-and-Play capability, was not able to change the configuration of EISA cards, but it could detect the cards, read their configuration, and reconfigure Plug-and-Play hardware to avoid resource conflicts. Windows 95 would also automatically attempt to install appropriate drivers for detected EISA cards.
EISA's success was far from guaranteed. Dell was a notable clone maker that did not join the Gang of Nine. Many manufacturers, including those in the Gang of Nine, researched the possibility of using MCA. [12] For example, Compaq actually produced prototype DeskPro systems using the bus. However, these were never put into production, and when it was clear that MCA had lost, Compaq allowed its MCA license to expire (the license actually cost relatively little; the primary costs associated with MCA, and at which the industry revolted, were royalties to be paid per system shipped).[ citation needed ]
Olivetti included EISA in its Olivetti NetStrada 7000 (CONDOR) product which embraced multiple bus architectures, its Adaptec RAID Controller occupied an EISA slot that could be accessed by up to 4 of its Pentium Pro 200 CPUs concurrently.
On the other hand, when it became clear to IBM that Micro Channel was dying, IBM actually licensed EISA for use in a few server systems. [ citation needed ]
Industry Standard Architecture (ISA) is the 16-bit internal bus of IBM PC/AT and similar computers based on the Intel 80286 and its immediate successors during the 1980s. The bus was (largely) backward compatible with the 8-bit bus of the 8088-based IBM PC, including the IBM PC/XT as well as IBM PC compatibles.
The Intel 486, officially named i486 and also known as 80486, is a microprocessor introduced in 1989. It is a higher-performance follow-up to the Intel 386. It represents the fourth generation of binary compatible CPUs following the 8086 of 1978, the Intel 80286 of 1982, and 1985's i386.
Peripheral Component Interconnect (PCI) is a local computer bus for attaching hardware devices in a computer and is part of the PCI Local Bus standard. The PCI bus supports the functions found on a processor bus but in a standardized format that is independent of any given processor's native bus. Devices connected to the PCI bus appear to a bus master to be connected directly to its own bus and are assigned addresses in the processor's address space. It is a parallel bus, synchronous to a single bus clock. Attached devices can take either the form of an integrated circuit fitted onto the motherboard or an expansion card that fits into a slot. The PCI Local Bus was first implemented in IBM PC compatibles, where it displaced the combination of several slow Industry Standard Architecture (ISA) slots and one fast VESA Local Bus (VLB) slot as the bus configuration. It has subsequently been adopted for other computer types. Typical PCI cards used in PCs include: network cards, sound cards, modems, extra ports such as Universal Serial Bus (USB) or serial, TV tuner cards and hard disk drive host adapters. PCI video cards replaced ISA and VLB cards until rising bandwidth needs outgrew the abilities of PCI. The preferred interface for video cards then became Accelerated Graphics Port (AGP), a superset of PCI, before giving way to PCI Express.
The VESA Local Bus is a short-lived expansion bus introduced during the i486 generation of x86 IBM-compatible personal computers. Created by VESA, the VESA Local Bus worked alongside the then-dominant ISA bus to provide a standardized high-speed conduit intended primarily to accelerate video (graphics) operations. VLB provides a standardized fast path that add-in (video) card makers could tap for greatly accelerated memory-mapped I/O and DMA, while still using the familiar ISA bus to handle basic device duties such as interrupts and port-mapped I/O. Some high-end 386DX motherboards also had a VL-Bus slot.
An IBM PC compatible is any personal computer that is hardware- and software-compatible with the IBM Personal Computer and its subsequent models. Like the original IBM PC, an IBM PC–compatible computer uses an x86-based central processing unit, sourced either from Intel or a second source like AMD, Cyrix or other vendors such as Texas Instruments, Fujitsu, OKI, Mitsubishi or NEC and is capable of using interchangeable commodity hardware such as expansion cards. Initially such computers were referred to as PC clones, IBM clones or IBM PC clones, but the term "IBM PC compatible" is now a historical description only, as the vast majority of microcomputers produced since the 1990s are IBM compatible. IBM itself no longer sells personal computers, having sold its division to Lenovo in 2005. "Wintel" is a similar description that is more commonly used for modern computers.
PC Card is a parallel peripheral interface for laptop computers and PDAs. The PCMCIA originally introduced the 16-bit ISA-based PCMCIA Card in 1990, but renamed it to PC Card in March 1995 to avoid confusion with the name of the organization. The CardBus PC Card was introduced as a 32-bit version of the original PC Card, based on the PCI specification. CardBus slots are backwards compatible, but older slots are not forward compatible with CardBus cards.
Risc PC was a range of personal computers launched in 1994 by Acorn, replacing the Archimedes series. The machines use the Acorn developed ARM CPU and were thereby not IBM PC-compatible.
In computing, an expansion card is a printed circuit board that can be inserted into an electrical connector, or expansion slot on a computer's motherboard to add functionality to a computer system. Sometimes the design of the computer's case and motherboard involves placing most of these slots onto a separate, removable card. Typically such cards are referred to as a riser card in part because they project upward from the board and allow expansion cards to be placed above and parallel to the motherboard.
The Amiga 2000 (A2000) is a personal computer released by Commodore in March 1987. It was introduced as a "big box" expandable variant of the Amiga 1000 but quickly redesigned to share most of its electronic components with the contemporary Amiga 500 for cost reduction. Expansion capabilities include two 3.5" drive bays and one 5.25" bay that could be used by a 5.25" floppy drive, a hard drive, or CD-ROM once they became available.
A graphics card is a computer expansion card that generates a feed of graphics output to a display device such as a monitor. Graphics cards are sometimes called discrete or dedicated graphics cards to emphasize their distinction to an integrated graphics processor on the motherboard or the central processing unit (CPU). A graphics processing unit (GPU) that performs the necessary computations is the main component in a graphics card, but the acronym "GPU" is sometimes also used to erroneously refer to the graphics card as a whole.
Micro Channel architecture, or the Micro Channel bus, is a proprietary 16- or 32-bit parallel computer bus publicly introduced by IBM in 1987 which was used on PS/2 and other computers until the mid-1990s. Its name is commonly abbreviated as "MCA", although not by IBM. In IBM products, it superseded the ISA bus and was itself subsequently superseded by the PCI bus architecture.
Wintel is the partnership of Microsoft Windows and Intel producing personal computers (PCs) using Intel x86-compatible processors running Microsoft Windows.
The Personal System/2 or PS/2 is IBM's second generation of personal computers. Released in 1987, it officially replaced the IBM PC, XT, AT, and PC Convertible in IBM's lineup. Many of the PS/2's innovations, such as the 16550 UART, 1440 KB 3.5-inch floppy disk format, 72-pin SIMMs, PS/2 port, and VGA video standard, went on to become standards in the broader PC market.
The IBM Personal Computer AT was released in 1984 as the fourth model in the IBM Personal Computer line, following the IBM PC/XT and its IBM Portable PC variant. It was designed around the Intel 80286 microprocessor.
PCI-X, short for Peripheral Component Interconnect eXtended, is a computer bus and expansion card standard that enhances the 32-bit PCI local bus for higher bandwidth demanded mostly by servers and workstations. It uses a modified protocol to support higher clock speeds, but is otherwise similar in electrical implementation. PCI-X 2.0 added speeds up to 533 MHz, with a reduction in electrical signal levels.
The Personal Computer Series, or PC Series, was IBM's follow-up to the Personal System/2 and PS/ValuePoint. Announced in October 1994 and withdrawn in October 2000, it was replaced by the IBM NetVista, apart from the Pentium Pro-based PC360 and PC365, which were replaced by the IBM IntelliStation.
IrisVision is an expansion card developed by Silicon Graphics for IBM compatible PCs in 1991 and is one of the first 3D accelerator cards available for the high end PC market. IrisVision is an adaptation of the graphics pipeline from the Personal IRIS workstation to the Micro Channel architecture and consumer ISA buses of most modern PCs of the day. It has the first variant of IRIS GL ported to the PC, predating OpenGL.
The Deskpro 386 is a line of desktop computers in Compaq's Deskpro range of IBM PC compatibles. Introduced in September 1986, the Deskpro 386 was the first personal computer to feature Intel's 32-bit 80386 microprocessor. It also marks the first time that a major component of the IBM Personal Computer de facto standard was updated by a company other than IBM themselves—in this case, upgrading from the 80286 processor of the Personal Computer/AT.
Reply Corporation, often shortened to Reply Corp., was an American computer company based in San Jose, California. Founded in 1988 by Steve Petracca, the company licensed the Micro Channel architecture from IBM for their own computers released in 1989, competing against IBM's PS/2 line. The company later divested from offering complete systems in favor of marketing motherboard upgrades for older PS/2s. Reply enjoyed a close relationship with IBM, owing to many of its founding employees, including Petracca, having worked for IBM. The company was acquired by Radius in 1997.
The Personal System/2 Model 30 and Personal System/2 Model 30 286 are IBM's entry-level desktop computers in their Personal System/2 (PS/2) family of personal computers. As opposed to higher-end entries in the PS/2 line which use Micro Channel bus architecture, the Model 30 features an Industry Standard Architecture bus, allowing it to use expansion cards from its direct predecessors, the PC/XT and the PC/AT. The original PS/2 Model 30, released in April 1987, is built upon the Intel 8086 microprocessor clocked at 8 MHz and features the 8-bit ISA bus; the Model 30 286, released in September 1988, features the Intel 80286 clocked at 10 MHz and includes the 16-bit ISA bus.
ISA bus speed.
EISA is still found on many of today's modern servers[,] owing to its long-standing presence in the PC server market.