ADAT Lightpipe

Last updated

The ADAT Lightpipe, officially the ADAT Optical Interface, is a standard for the transfer of digital audio between equipment. It was originally developed by Alesis but has since become widely accepted, [1] with many third party hardware manufacturers including Lightpipe interfaces on their equipment. The protocol has become so popular that the term ADAT is now often used to refer to the transfer standard rather than to the Alesis Digital Audio Tape itself.

Contents

Cables and interface

Lightpipe uses the same connection hardware as S/PDIF: fiber optic cables (hence its name) to carry data, with Toslink connectors and optical transceivers at either end. However, the data streams of the two protocols are incompatible. S/PDIF is mostly used for transferring stereo or multi-channel surround sound audio, whereas the ADAT optical interface supports up to 8 audio channels at 48 kHz, 24 bit. Lightpipe devices have been successfully interfaced via FireWire. [2]

Data transfer

Lightpipe can carry eight channels of uncompressed digital audio at 24 bit resolution at 48,000 samples or four channels at 96,000 samples per second. Initially used for the transfer of digital audio between ADATs, the protocol was designed with future improvements in mind. All Lightpipe signals are transmitted at 24 bit resolution, no matter what the depth of the audio; information is contained within the Most Significant Bits and the rest of the bits remain a string of zeros. For example, if a 16 bit signal is sent via Lightpipe, the first sixteen bits contain the audio information while the other eight are simply occupied by zeros. The receiving device ignores information it cannot process. For example, a 20 bit signal going from a Type II ADAT to a Type I (which only operates at 16 bits) will simply ignore the bits below the sixteen MSBs. [3]

Higher sample rates can be accommodated with a reduced number of channels. While the original ADAT machines did not support this, the Lightpipe format was modified using bit-splitting techniques by the company Sonorus. Known as S/MUX (short for 'sample multiplexing'), this connection allows 4 channels at up to 96 kHz, or two channels at up to 192 kHz, on one optical cable. Most manufacturers implementing ADAT Lightpipe now support this S/MUX interface extension. [4]

Light carrying the data signal through the Lightpipe is turned into an electronic data stream going to an IC chip commonly referred to at Alesis as "the 1-K chip". From there the audio data frame is routed to processing ICs.

With an ADAT Lightpipe and an ADAT controller linking up to four ADATs using CAT5 cables with RJ-connectors and SMPTE Time Code, you could synchronize four 8-track ADATs together for a total of 32 simultaneous synchronized channel tracks of 16 or 20 bit audio data. 24 bit came later with the HD24 hard disk recorder in early 2001, which also made use of Lightpipe capabilities. [5]

Advantages

The lightpipe is "hot-pluggable", which means devices do not need to be turned off for plugging in or unplugging (although it is advisable to mute the receiving equipment, since there will be a large signal spike when the connection is made). The optical connect avoids ground-loops, which can be troublesome in larger installations, and will not transfer any harmful electrical spikes from one device to the next.

Use in ADAT systems

Lightpipe was designed for use with the Alesis ADATs, and although extremely versatile, there are a few limitations. For straightforward digital audio transfer, the receiving device can synchronize to the lightpipe's embedded clock signal, achieving a 1:1 digital copy. For transport control, additional synchronization is needed between devices. (For example, using two ADAT machines at the same time to achieve 16-channel throughput would require better transport control; otherwise, the two ADAT machines would be very unlikely to play in sync.) Nine pin D connectors are used to transfer transport information. The Alesis ADAT HD24 also offers MIDI Time Code for synchronization with MIDI-enabled devices.

Lightpipe bitstream

In order to fit 8 channels within the bandwidth limits of the standard TOSLINK transceiver modules, the bitstream is not biphase mark coded like S/PDIF. Instead, NRZI coding is used, where a 0 bit indicates no transition and a 1 bit is a transition. 8 audio samples at 24 bits per sample plus 4 user bits (196 bits total) are sent in groups of 4 data bits followed by a 1 bit to force a transition. This totals 196×5/4 = 245 bits. 10 consecutive 0 bits followed by a 1 bit provide frame synchronization. [6]

One frame is sent at the desired sample rate, for a bit rate of 256×48 kHz = 12.288 Mbit/s. This is twice the baud rate used by S/PDIF (3.072 Mbit/s, doubled by biphase coding to 6.144 Mbaud), but still within the specified 15 Mbaud capacity of the popular TOTX147 /TORX147 TOSLINK transceivers.

User data bit allocations: [7]

The transmission speed of the user bits is equal to the sampling rate (e.g. 48,000 bits per second)

Competing protocols

There are numerous digital audio transfer protocols. The most commonly used professional interface is AES3, developed by the Audio Engineering Society and the European Broadcasting Union, which transmits two channels of digital audio up to 24-bits 192 kHz over a balanced XLR cable. S/PDIF (Sony/Philips Digital Interface) is the consumer version of this protocol, which uses either RCA leads or optical cables identical to lightpipe cables. MADI can carry 64 channels of audio at 48 kHz, 32 channels at 96 kHz or 16 channels at 192 kHz.

Audio over Ethernet and audio over IP use standard network technologies and equipment and, as a network solution, offer additional flexibility compared to point-to-point technologies such as Lightpipe.

Related Research Articles

Digital audio Technology that records, stores, and reproduces sound

Digital audio is a representation of sound recorded in, or converted into, digital form. In digital audio, the sound wave of the audio signal is typically encoded as numerical samples in a continuous sequence. For example, in CD audio, samples are taken 44,100 times per second, each with 16-bit sample depth. Digital audio is also the name for the entire technology of sound recording and reproduction using audio signals that have been encoded in digital form. Following significant advances in digital audio technology during the 1970s and 1980s, it gradually replaced analog audio technology in many areas of audio engineering and telecommunications in the 1990s and 2000s.

S/PDIF Standardized digital audio interface

S/PDIF is a type of digital audio interconnect used in consumer audio equipment to output audio over relatively short distances. The signal is transmitted over either a coaxial cable with RCA connectors or a fiber optic cable with TOSLINK connectors. S/PDIF interconnects components in home theaters and other digital high-fidelity systems.

AES3 is a standard for the exchange of digital audio signals between professional audio devices. An AES3 signal can carry two channels of PCM audio over several transmission media including balanced lines, unbalanced lines, and optical fiber.

DVD-Audio DVD-based format for storing audio

DVD-Audio is a digital format for delivering high-fidelity audio content on a DVD. DVD-Audio uses most of the storage on the disc for high-quality audio and is not intended to be a video delivery format.

Serial digital interface

Serial digital interface (SDI) is a family of digital video interfaces first standardized by SMPTE in 1989. For example, ITU-R BT.656 and SMPTE 259M define digital video interfaces used for broadcast-grade video. A related standard, known as high-definition serial digital interface (HD-SDI), is standardized in SMPTE 292M; this provides a nominal data rate of 1.485 Gbit/s.

Alesis Digital Audio Tape (ADAT) is a magnetic tape format used for the recording of eight digital audio tracks onto the same S-VHS tape used by consumer VCRs.

mLAN, short for Music Local Area Network, is a protocol for synchronized transmission and management of multi-channel digital audio, video, control signals and multi-port MIDI over a network.

I²S, is an electrical serial bus interface standard used for connecting digital audio devices together. It is used to communicate PCM audio data between integrated circuits in an electronic device. The I²S bus separates clock and serial data signals, resulting in simpler receivers than those required for asynchronous communications systems that need to recover the clock from the data stream. Alternatively I²S is spelled I2S or IIS. Despite the similar name, I²S is unrelated to the bidirectional I²C (IIC) bus.

Korg Trinity

The Korg Trinity is a synthesizer music workstation released by Korg in 1995. It was also the first workstation to offer modular expansion for not only sounds, but also studio-grade feature such as SCSI, ADAT, various sound engine processors, audio recording capability, and more. It was considered one of the most comprehensive music workstations, in term of features, at the time.

SMPTE 292 is a digital video transmission line standard published by the Society of Motion Picture and Television Engineers (SMPTE). This technical standard is usually referred to as HD-SDI; it is part of a family of standards that define a Serial Digital Interface based on a coaxial cable, intended to be used for transport of uncompressed digital video and audio in a television studio environment.

MADI multichannel digital audio interface

Multichannel Audio Digital Interface (MADI) standardized as AES10 by the Audio Engineering Society (AES) defines the data format and electrical characteristics of an interface that carries multiple channels of digital audio. The AES first documented the MADI standard in AES10-1991, and updated it in AES10-2003 and AES10-2008. The MADI standard includes a bit-level description and has features in common with the two-channel AES3 interface.

McASP is an acronym for Multichannel Audio Serial Port, a communication peripheral found in Texas Instruments family of digital signal processors (DSPs) and Microcontroller Units (MCUs).
The McASP functions as a general-purpose audio serial port optimized for the needs of multichannel audio applications. Depending on the implementation, the McASP may be useful for time-division multiplexed (TDM) stream, Inter-Integrated Sound (I2S) protocols, and intercomponent digital audio interface transmission (DIT). However, some implementations are limited to supporting just the Inter-Integrated Sound (I2S) protocol.
The McASP consists of transmit and receive sections that may operate synchronized, or completely independently with separate master clocks, bit clocks, and frame syncs, and using different transmit modes with different bit-stream formats. The McASP module also includes up to 16 serializers that can be individually enabled to either transmit or receive. In addition, all of the McASP pins can be configured as general-purpose input/output (GPIO) pins.

The Tascam Digital Interface (TDIF) is a proprietary format connector defined by TASCAM that is unbalanced and uses a 25-pin D-sub cable to transmit and/or receive up to eight channels of digital audio between compatible devices. Unlike the ADAT lightpipe connection, TDIF uses a bidirectional connection, meaning that only one cable is required to connect the eight ins and outs of one device or another.

CobraNet is a combination of software, hardware, and network protocols designed to deliver uncompressed, multi-channel, low-latency digital audio over a standard Ethernet network. Developed in the 1990s, CobraNet is widely regarded as the first commercially successful audio-over-Ethernet implementation.

An audio signal is a representation of sound, typically using either a changing level of electrical voltage for analog signals, or a series of binary numbers for digital signals. Audio signals have frequencies in the audio frequency range of roughly 20 to 20,000 Hz, which corresponds to the lower and upper limits of human hearing. Audio signals may be synthesized directly, or may originate at a transducer such as a microphone, musical instrument pickup, phonograph cartridge, or tape head. Loudspeakers or headphones convert an electrical audio signal back into sound.

Audio connectors and video connectors are electrical or optical connectors for carrying audio or video signals. Audio interfaces or video interfaces define physical parameters and interpretation of signals. For digital audio and digital video, this can be thought of as defining the physical layer, data link layer, and most or all of the application layer. For analog audio and analog video these functions are all represented in a single signal specification like NTSC or the direct speaker-driving signal of analog audio.

TOSLINK Standardized optical fiber connector system

TOSLINK is a standardized optical fiber connector system. Also known generically as optical audio, its most common use is in consumer audio equipment, where it carries a digital audio stream from components such as CD and DVD players, DAT recorders, computers, and modern video game consoles, to an AV receiver that can decode two channels of uncompressed lossless PCM audio or compressed 5.1/7.1 surround sound such as Dolby Digital or DTS Surround System. Unlike HDMI, TOSLINK does not have the bandwidth to carry the lossless versions of Dolby TrueHD, DTS-HD Master Audio, or more than two channels of PCM audio.

Pulse-code modulation (PCM) is a method used to digitally represent sampled analog signals. It is the standard form of digital audio in computers, compact discs, digital telephony and other digital audio applications. In a PCM stream, the amplitude of the analog signal is sampled regularly at uniform intervals, and each sample is quantized to the nearest value within a range of digital steps.

HDBaseT is a consumer electronic (CE) and commercial connectivity standard for transmission of uncompressed ultra-high-definition video, digital audio, DC power, Ethernet, USB 2.0, and other control communication over a single category cable up to 100 m in length, terminated using the same 8P8C modular connectors as used in Ethernet networks. HDBaseT technology is promoted and advanced by the HDBaseT Alliance.

Media-accelerated Global Information Carrier (MaGIC) is an audio over Ethernet protocol developed by Gibson Guitar Corporation in partnership with 3COM. It allows bidirectional transmission of multichannel audio data, control data, and instrument power.

References

  1. Robjohns, H. 2007. Digital Interfacing. Sound on Sound. Volume 22, Issue 4, p.105.
  2. M-Audio ProFire Lightbridge, an example of a Lightpipe wireless interfacing implementation Archived 12 October 2007 at the Wayback Machine
  3. Alesis. 199?. ADAT LX20 Reference Manual. Chapter 8, p.52. Available online: . Accessed 24 August 2007
  4. Digital Interfacing Sound on Sound.
  5. Former ADAT service technician from Alesis
  6. ADAT project, ACKspace wiki
  7. Wavefront Semiconductor. 2005. AL1401AG Datasheet Archived 26 July 2011 at the Wayback Machine . Page 2 - pin description table. Accessed 15 January 2010
  8. Sonorus S/MUX "Archived copy" (PDF). Archived from the original (PDF) on 16 July 2011. Retrieved 2011-01-16.CS1 maint: archived copy as title (link) Accessed 15 January 2010
  9. Wavefront Semiconductor application note AN3101-10 S/Mux Receiver. 2005. Archived 26 July 2011 at the Wayback Machine Accessed 15 January 2010