The following is a comparison of audio over Ethernet and audio over IP audio network protocols and systems.
Technology | Development date | Transport | Transmission scheme | Mixed use networking | Control communications | Topology | Fault tolerance | Distance | Diameter | Network capacity | Latency | Maximum available sampling rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AES47 | 2002 [2] | ATM | Isochronous | Coexists with ATM | Any IP or ATM protocol, IEC 62379 | Mesh | Provided by ATM | Cat5=100 m, MM=2 km, SM=70 km | Unlimited | Unlimited | 125 μs per hop | 192 kHz |
AES50 | Ethernet physical layer [lower-alpha 1] | Isochronous or synchronous | dedicated Cat5 | 5 Mbit/s Ethernet | Point-to-point | FEC, redundant link | Cat5=100 m | Unlimited | 48 channels | 63 μs | 384 kHz and DSD | |
AES67 | 2013-09 [3] | Any IP medium | Isochronous | Coexists with other traffic using DiffServ QoS | IP, SIP | Any L2 or IP network | Provided by IP | Medium dependent | Unlimited | Unlimited | 4, 1, 1⁄3, 1⁄4 and 1⁄8 ms packet times [lower-alpha 2] | 96 kHz |
AudioRail [lower-alpha 3] | Ethernet physical layer | Synchronous | Cat5 or fiber | Proprietary | Daisy chain | None | Cat5=100 m, MM=2 km, SM=70 km | Unlimited | 32 channels | 4.5 μs + 0.25 μs per hop | 48 kHz (32 channels), 96 kHz (16 channels) | |
AVB (using IEEE 1722 transport) | 2011-09 | Enhanced Ethernet | Isochronous | Coexists with other traffic using IEEE 802.1p QoS and admission control | IEEE 1722.1 | Spanning tree | Provided by IEEE 802.1 | Cat5=100 m, MM=2 km, SM=70 km | Dependent on latency class and network speed[ citation needed ] | Dependent on latency class and network speed[ citation needed ] | 2 ms or less | 192 kHz |
Aviom Pro64 | Ethernet physical layer | Synchronous | Dedicated Cat5 and fiber | Proprietary | Daisy chain (bidirectional) | Redundant links | Cat5e=120 m, MM=2 km, SM=70 km | 9520 km [lower-alpha 4] | 64 channels | 322 μs + 1.34 μs per hop | 208 kHz [lower-alpha 5] | |
CobraNet | 1996 | Ethernet data link layer | Isochronous | coexists with Ethernet | Ethernet, SNMP, MIDI | Spanning tree | Provided by IEEE 802.1 [lower-alpha 6] | Cat5=100 m, MM=2 km, SM=70 km | 7 hops, 10 km [lower-alpha 7] | Unlimited | 1+1⁄3, 2+2⁄3 and 5+1⁄3 ms | 96 kHz |
Dante | 2006 | Any IP medium | Isochronous | Coexists with other traffic using DiffServ QoS | Proprietary Control Protocol based on IP, Bonjour | Any L2 or single IP subnet | Provided by IEEE 802.1 and redundant link | Cat5=100 m, MM=2 km, SM=70 km | Dependent on latency | Unlimited | 84 μs or greater [lower-alpha 8] | 192 kHz |
EtherSound ES-100 | 2001 | Ethernet data link layer | Isochronous | Dedicated Ethernet | Proprietary | Star, daisy chain, ring | Fault tolerant ring | Cat5=140 m, MM=2 km, SM=70 km | Unlimited | 64 [lower-alpha 9] | 84–125 μs + 1.4 μs/node | 96 kHz |
EtherSound ES-Giga | Ethernet data-link layer | Isochronous | Coexists with Ethernet | Proprietary | Star, Daisy chain, ring | Fault tolerant ring | Cat5=140 m, MM=600 m, SM=70 km | Unlimited | 512 [lower-alpha 10] | 84–125 μs + 0.5 μs/node | 96 kHz | |
Gibson MaGIC | 1999-09-18 [5] | Ethernet data-link layer | Isochronous | Proprietary, MIDI | Star, Daisy chain | Cat5=100 m | 32 channels | 290 μs or less [6] | 192 kHz | |||
HyperMAC | Gigabit Ethernet | Isochronous | Dedicated Cat5, Cat6, or fiber | 100 Mbit/s+ Ethernet | Point-to-point | Redundant link | Cat6=100 m, MM=500 m, SM=10 km | Unlimited | 384+ channels | 63 μs | 384 kHz and DSD | |
Livewire | 2003 | Any IP medium | Isochronous | Coexists with Ethernet | Ethernet, HTTP, XML | Any L2 or IP network | Provided by IEEE 802.1 [lower-alpha 11] | Cat5=100 m, MM=2 km, SM=70 km | Unlimited | 32760 channels | 0.75 ms | 48 kHz |
Milan | 2018 | Ethernet | Isochronous | Coexist with other protocols in converged networks | IEEE 1722.1 | Star, Daisy chain | Redundant links | Cat5=100 m, MM=2 km, SM=70 km | Dependent on latency class and network speed[ citation needed ] | Unlimited | 2 ms or less | 192 kHz |
mLAN | 2000-01 [7] | IEEE 1394 | Isochronous | Coexists with IEEE 1394 | IEEE 1394, MIDI | Tree | Provided by IEEE 1394b | IEEE 1394 cable (2 power, 4 signal): 4.5 m | 100 m | 63 devices (800 Mbit/s) | 354.17 μs | 192 kHz [lower-alpha 12] |
Optocore [lower-alpha 13] | Dedicated fiber | Synchronous | Dedicated Cat5/fiber | Proprietary | Ring | Redundant ring | MM=700 m, SM=110 km | Unlimited | 1008 channels at 48 kHz | 41.6 μs [8] | 96 kHz | |
Q-LAN | 2009 | IP over Gigabit Ethernet | Isochronous | Coexists with other traffic using DiffServ QoS | IP, HTTP, XML | Any L2 or IP network | IEEE 802.1, redundant link, IP routing | Cat5=100 m, MM=550 m, SM=10 km | 7 hops or 35 km | Unlimited | 1 ms | 48 kHz |
RAVENNA | 2010 | Any IP medium | Isochronous | Coexists with other traffic using DiffServ QoS | IP, RTSP, Bonjour | Any L2 or IP network | Provided by IP and redundant link | Medium dependent | Unlimited | Unlimited | variable [lower-alpha 14] | 384 kHz and DSD |
Riedel Rocknet | Ethernet physical layer | Isochronous | Dedicated Cat5/fiber | Proprietary | Ring | Redundant ring | Cat5e=150 m, MM=2 km, SM=20 km | 10 km max, 99 devices | 160 channels (48 kHz/24-bit) [9] | 400 μs at 48 kHz | 96 kHz | |
SoundGrid | Ethernet data link layer | Isochronous | Dedicated Ethernet | Proprietary | Star, daisy chain | Device redundancy | Cat5/Cat5e/Cat6/Cat7 =100m, MM=2km, SM=70km | 3 hops | Unlimited | 166 μs or greater | 96kHz | |
Symetrix SymLink | Ethernet physical layer | Synchronous | Dedicated Ethernet | Proprietary | Ring | None | Cat5=10 m | 16 devices | 64 channels | 83 μs per hop | 48 kHz | |
UMAN | IEEE 1394 and Ethernet AVB [lower-alpha 15] | Isochronous and asynchronous | Coexists with Ethernet | IP-based XFN | Daisy chain in ring, tree, or star (with hubs) | fault tolerant ring, device redundancy | Cat5e=50 m, Cat6=75 m, MM=1 km, SM=>2 km | Unlimited | 400 channels (48 kHz/24 bit) [lower-alpha 16] | 354 μs + 125 μs per hop [lower-alpha 17] | 192 kHz |
Ethernet is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.
A network switch is networking hardware that connects devices on a computer network by using packet switching to receive and forward data to the destination device.
In computer networking, link aggregation is the combining of multiple network connections in parallel by any of several methods. Link aggregation increases total throughput beyond what a single connection could sustain, and provides redundancy where all but one of the physical links may fail without losing connectivity. A link aggregation group (LAG) is the combined collection of physical ports.
EtherChannel is a port link aggregation technology or port-channel architecture used primarily on Cisco switches. It allows grouping of several physical Ethernet links to create one logical Ethernet link for the purpose of providing fault-tolerance and high-speed links between switches, routers and servers. An EtherChannel can be created from between two and eight active Fast, Gigabit or 10-Gigabit Ethernet ports, with an additional one to eight inactive (failover) ports which become active as the other active ports fail. EtherChannel is primarily used in the backbone network, but can also be used to connect end user machines.
Profinet is an industry technical standard for data communication over Industrial Ethernet, designed for collecting data from, and controlling equipment in industrial systems, with a particular strength in delivering data under tight time constraints. The standard is maintained and supported by Profibus and Profinet International, an umbrella organization headquartered in Karlsruhe, Germany.
A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.
EtherCAT is an Ethernet-based fieldbus system developed by Beckhoff Automation. The protocol is standardized in IEC 61158 and is suitable for both hard and soft real-time computing requirements in automation technology.
In audio and broadcast engineering, Audio over Ethernet is the use of an Ethernet-based network to distribute real-time digital audio. AoE replaces bulky snake cables or audio-specific installed low-voltage wiring with standard network structured cabling in a facility. AoE provides a reliable backbone for any audio application, such as for large-scale sound reinforcement in stadiums, airports and convention centers, multiple studios or stages.
EtherSound is an audio-over-Ethernet technology for audio engineering and broadcast engineering applications. EtherSound is developed and licensed by Digigram. EtherSound is intended by the developer to be compliant with IEEE 802.3 Ethernet standards. Just as the IEEE defines rates such as 100 Megabit and Gigabit Ethernet standards, EtherSound has been developed as both ES-100 and ES-Giga. The two versions of EtherSound are not compatible.
CobraNet is a combination of software, hardware, and network protocols designed to deliver uncompressed, multi-channel, low-latency digital audio over a standard Ethernet network. Developed in the 1990s, CobraNet is widely regarded as the first commercially successful audio-over-Ethernet implementation.
The Time-Triggered Ethernet standard defines a fault-tolerant synchronization strategy for building and maintaining synchronized time in Ethernet networks, and outlines mechanisms required for synchronous time-triggered packet switching for critical integrated applications and integrated modular avionics (IMA) architectures. SAE International released SAE AS6802 in November 2011.
Sercos III is the third generation of the Sercos interface, a standardized open digital interface for the communication between industrial controls, motion devices, input/output devices (I/O), and Ethernet nodes, such as PCs. Sercos III applies the hard real-time features of the Sercos interface to Ethernet. It is based upon and conforms to the Ethernet standard. Work began on Sercos III in 2003, with vendors releasing first products supporting it in 2005.
HDBaseT is a consumer electronic (CE) and commercial connectivity standard for transmission of uncompressed ultra-high-definition video, digital audio, DC power, Ethernet, USB 2.0, and other control communication over a single category cable up to 100 m (328 ft) in length, terminated using the same 8P8C modular connectors as used in Ethernet networks. HDBaseT technology is promoted and advanced by the HDBaseT Alliance.
Media-accelerated Global Information Carrier (MaGIC) is an audio over Ethernet protocol developed by Gibson Guitar Corporation in partnership with 3COM. It allows bidirectional transmission of multichannel audio data, control data, and instrument power.
SoundGrid is a networking and processing platform audio application made by Waves Audio and developed in cooperation with DiGiCo.
AES67 is a technical standard for audio over IP and audio over Ethernet (AoE) interoperability. The standard was developed by the Audio Engineering Society and first published in September 2013. It is a layer 3 protocol suite based on existing standards and is designed to allow interoperability between various IP-based audio networking systems such as RAVENNA, Livewire, Q-LAN and Dante.
Time-Sensitive Networking (TSN) is a set of standards under development by the Time-Sensitive Networking task group of the IEEE 802.1 working group. The TSN task group was formed in November 2012 by renaming the existing Audio Video Bridging Task Group and continuing its work. The name changed as a result of the extension of the working area of the standardization group. The standards define mechanisms for the time-sensitive transmission of data over deterministic Ethernet networks.
Deterministic Networking (DetNet) is an effort by the IETF DetNet Working Group to study implementation of deterministic data paths for real-time applications with extremely low data loss rates, packet delay variation (jitter), and bounded latency, such as audio and video streaming, industrial automation, and vehicle control.
Audio Video Bridging (AVB) is a common name for the set of technical standards which provide improved synchronization, low-latency, and reliability for switched Ethernet networks. AVB embodies the following technologies and standards:
AES50 is an Audio over Ethernet protocol for multichannel digital audio. It is defined by the AES50-2011 standard for High-resolution multi-channel audio interconnection (HRMAI).