Comparison of audio network protocols

Last updated

The following is a comparison of audio over Ethernet and audio over IP audio network protocols and systems.

Audio network technology matrix [1]
TechnologyDevelopment dateTransportTransmission schemeMixed use networkingControl communicationsTopologyFault toleranceDistanceDiameterNetwork capacityLatencyMaximum available sampling rate
AES47 2002 [2] ATM IsochronousCoexists with ATMAny IP or ATM protocol, IEC 62379 MeshProvided by ATMCat5=100 m, MM=2 km, SM=70 kmUnlimitedUnlimited125 μs per hop192 kHz
AES50 Ethernet physical layer [a] Isochronous or synchronousdedicated Cat55 Mbit/s Ethernet Point-to-point FEC, redundant linkCat5=100 mUnlimited48 channels63 μs384 kHz and DSD
AES67 2013-09 [3] Any IP mediumIsochronousCoexists with other traffic using DiffServ QoSIP, SIPAny L2 or IP networkProvided by IPMedium dependentUnlimitedUnlimited4, 1, 13, 14 and 18 ms packet times [b] 96 kHz
AudioRail [c] Ethernet physical layer SynchronousCat5 or fiberProprietary Daisy chain NoneCat5=100 m, MM=2 km, SM=70 kmUnlimited32 channels4.5 μs + 0.25 μs per hop48 kHz (32 channels), 96 kHz (16 channels)
AVB (using IEEE 1722 transport)2011-09Enhanced EthernetIsochronousCoexists with other traffic using IEEE 802.1p QoS and admission control IEEE 1722.1 Spanning tree Provided by IEEE 802.1 Cat5=100 m, MM=2 km, SM=70 kmDependent on latency class and network speed[ citation needed ]Dependent on latency class and network speed[ citation needed ]2 ms or less192 kHz
Aviom Pro64 Ethernet physical layer SynchronousDedicated Cat5 and fiberProprietary Daisy chain (bidirectional)Redundant linksCat5e=120 m, MM=2 km, SM=70 km9520 km [d] 64 channels322 μs + 1.34 μs per hop208 kHz [e]
CobraNet 1996Ethernet data link layer Isochronouscoexists with EthernetEthernet, SNMP, MIDI Spanning tree Provided by IEEE 802.1 [f] Cat5=100 m, MM=2 km, SM=70 km7 hops, 10 km [g] Unlimited1+13, 2+23 and 5+13 ms96 kHz
Dante 2006Any IP mediumIsochronousCoexists with other traffic using DiffServ QoSProprietary Control Protocol based on IP, Bonjour Any L2 or single IP subnetProvided by IEEE 802.1 and redundant linkCat5=100 m, MM=2 km, SM=70 kmDependent on latencyUnlimited84 μs or greater [h] 192 kHz
EtherSound ES-1002001Ethernet data link layer IsochronousDedicated EthernetProprietary Star, daisy chain, ring Fault tolerant ringCat5=140 m, MM=2 km, SM=70 kmUnlimited64 [i] 84–125 μs + 1.4 μs/node96 kHz
EtherSound ES-GigaEthernet data-link layerIsochronousCoexists with EthernetProprietary Star, Daisy chain, ring Fault tolerant ringCat5=140 m, MM=600 m, SM=70 kmUnlimited512 [j] 84–125 μs + 0.5 μs/node96 kHz
Gibson MaGIC 1999-09-18 [5] Ethernet data-link layerIsochronousProprietary, MIDI Star, Daisy chain Cat5=100 m32 channels290 μs or less [6] 192 kHz
HyperMAC Gigabit Ethernet IsochronousDedicated Cat5, Cat6, or fiber100 Mbit/s+ EthernetPoint-to-pointRedundant linkCat6=100 m, MM=500 m, SM=10 kmUnlimited384+ channels63 μs384 kHz and DSD
Livewire 2003Any IP mediumIsochronousCoexists with EthernetEthernet, HTTP, XMLAny L2 or IP networkProvided by IEEE 802.1 [k] Cat5=100 m, MM=2 km, SM=70 kmUnlimited32760 channels0.75 ms48 kHz
Milan2018EthernetIsochronousCoexist with other protocols in converged networksIEEE 1722.1 Star, Daisy chain Redundant linksCat5=100 m, MM=2 km, SM=70 kmDependent on latency class and network speed[ citation needed ]Unlimited2 ms or less192 kHz
mLAN 2000-01 [7] IEEE 1394 IsochronousCoexists with IEEE 1394IEEE 1394, MIDITreeProvided by IEEE 1394bIEEE 1394 cable (2 power, 4 signal): 4.5 m100 m63 devices (800 Mbit/s)354.17 μs192 kHz [l]
Optocore [m] Dedicated fiberSynchronousDedicated Cat5/fiberProprietary Ring Redundant ringMM=700 m, SM=110 kmUnlimited1008

channels at 48 kHz

41.6 μs [8] 96 kHz
Q-LAN 2009IP over Gigabit Ethernet IsochronousCoexists with other traffic using DiffServ QoSIP, HTTP, XMLAny L2 or IP networkIEEE 802.1, redundant link, IP routingCat5=100 m, MM=550 m, SM=10 km7 hops or 35 kmUnlimited1 ms48 kHz
RAVENNA 2010Any IP mediumIsochronousCoexists with other traffic using DiffServ QoSIP, RTSP, BonjourAny L2 or IP networkProvided by IP and redundant linkMedium dependentUnlimitedUnlimitedvariable [n] 384 kHz and DSD
Riedel Rocknet Ethernet physical layer IsochronousDedicated Cat5/fiberProprietary Ring Redundant ringCat5e=150 m, MM=2 km, SM=20 km10 km max, 99 devices160 channels (48 kHz/24-bit) [9] 400 μs at 48 kHz96 kHz
SoundGrid Ethernet data link layerIsochronousDedicated EthernetProprietaryStar, daisy chainDevice redundancyCat5/Cat5e/Cat6/Cat7 =100m,
MM=2km,
SM=70km
3 hopsUnlimited166 μs or greater96kHz
Symetrix SymLink Ethernet physical layer SynchronousDedicated EthernetProprietary Ring NoneCat5=10 m16 devices64 channels83 μs per hop48 kHz
UMAN IEEE 1394 and Ethernet AVB [o] Isochronous and asynchronousCoexists with EthernetIP-based XFN Daisy chain in ring, tree, or star (with hubs)fault tolerant ring, device redundancyCat5e=50 m, Cat6=75 m, MM=1 km, SM=>2 kmUnlimited400 channels (48 kHz/24 bit) [p] 354 μs + 125 μs per hop [q] 192 kHz

Notes

  1. Ethernet transport is combined with a proprietary audio clock transport. AES50 and HyperMAC are point-to-point audio connections, but they bridge a limited bandwidth of regular Ethernet for the purpose of control communications. An AES50/HyperMAC router contains a crosspoint matrix (or similar) for audio routing, and an Ethernet switch for control routing. The system topology may therefore follow any valid Ethernet topology, but the audio routers need a priori knowledge of the topology. While there are no limits to the number of AES50 routing devices that can be interconnected, each hop adds another link's worth of latency, and each router device needs to be controlled individually.
  2. AES67 devices are required to implement the 1 ms packet time. Minimum theoretical latency is two times packet time. Typical implementations achieve latencies of three times the packet time.
  3. Technology retired February 2014 [4]
  4. The network diameter figure is the largest conceivable network using fiber and 138 Pro64 merger units; derived from maximum allowed response time between control master and furthest slave device.
  5. Pro64 supports a wide variation range from the nominal sample rate values (e.g., 158.8 kHz - 208 kHz).
  6. Network redundancy is provided by 802.1 Ethernet: STP, Link aggregation; redundant network connections (DualLink) and redundant devices (BuddyLink) are supported.
  7. Indicated diameter is for 5+13 ms latency mode. CobraNet has more stringent design rules for its lower latency modes. Requirements are documented in terms of maximum delay and delay variation. A downloadable CAD tool can be used to validate a network design for a given operating mode.
  8. The 84 μs latency value is based on 4 audio samples with this configuration. Note that latency is dependent on topology and bandwidth constraints of the underlying hardware, for example, 800 μs on a 100 Mbit/s Dolby Lake Processor.
  9. EtherSound allows channels to be dropped and added at each node along the daisy-chain or ring. Although the number of channels between any two locations is limited to 64, depending on routing requirements, the total number of channels on the network may be significantly higher.
  10. EtherSound allows channels to be dropped and added at each node along the daisy-chain or ring. Although the number of channels between any two locations is limited to 512, depending on routing requirements, the total number of channels on the network may be significantly higher.
  11. Network redundancy is provided by 802.1 Ethernet: STP, Link aggregation.
  12. Many mLAN devices have a maximum sampling rate of 96 kHz, but this is a constraint of the stream extraction chips used rather than the core mLAN technology.
  13. These entries refer to the classic fiber-based Optocore system; no information has yet been obtained regarding the Cat5e version. Confirmation is being sought for the figure of 110 km max distance.
  14. Latency depends on frame size (packet time), network topology and chosen link offset, with. min. frame size = 1 sample.
  15. Transport is listed for media streaming and control. Ethernet is also for control.
  16. UMAN also supports up to 25 channels of H.264 video.
  17. Base latency measurement is provided for up to 16 daisy-chained devices.

References

  1. "Best Practices in Network Audio" (PDF). Audio Engineering Society. 2009. Retrieved 2014-11-13.
  2. AES47-2006 (r2011): AES standard for digital audio - Digital input-output interfacing - Transmission of digital audio over asynchronous transfer mode (ATM) networks, Audio Engineering Society
  3. AES67-2013: AES standard for audio applications of networks - High-performance streaming audio-over-IP interoperability, Audio Engineering Society, 2013-09-11, retrieved 2018-04-15
  4. "AudioRail product line retired (February, 2014)" . Retrieved 2015-12-13.
  5. "Media-accelerated Global Information Carrier". Archived from the original on 2010-05-14.
  6. Media-accelerated Global Information Carrier Engineering Specification Revision 3.0c (PDF), archived from the original (PDF) on 2016-03-04
  7. Yamaha Utilizes "Firewire" for Audio and MIDI: Reduces Need For Cables, Harmony Central, archived from the original on 2006-01-08
  8. "Optocore connects everything" . Retrieved 2015-12-13.
  9. "ROCKNET – Digital Audio Network". Archived from the original on 2015-12-22. Retrieved 2015-12-13.