In audio and broadcast engineering, audio over Ethernet (AoE) is the use of an Ethernet-based network to distribute real-time digital audio. AoE replaces bulky snake cables or audio-specific installed low-voltage wiring with standard network structured cabling in a facility. AoE provides a reliable backbone for any audio application, such as for large-scale sound reinforcement in stadiums, airports and convention centers, multiple studios or stages.
While AoE bears a resemblance to voice over IP (VoIP) and audio over IP (AoIP), AoE is intended for high-fidelity, low-latency professional audio. Because of the fidelity and latency constraints, AoE systems generally do not utilize audio data compression. AoE systems use a much higher bit rate (typically 1 Mbit/s per channel) and much lower latency (typically less than 10 milliseconds) than VoIP. AoE requires a high-performance network. Performance requirements may be met through use of a dedicated local area network (LAN) or virtual LAN (VLAN), overprovisioning or quality of service features.
Some AoE systems use proprietary protocols (at the lower OSI layers) which create Ethernet frames that are transmitted directly onto the Ethernet (layer 2) for efficiency and reduced overhead. The word clock may be provided by broadcast packets.
There are several different and incompatible protocols for audio over Ethernet. Protocols can be broadly categorized into layer-1, layer-2 and layer-3 systems based on the layer in the OSI model where the protocol exists.
Layer-1 protocols use Ethernet wiring and signaling components but do not use the Ethernet frame structure. Layer-1 protocols often use their own media access control (MAC) rather than the one native to Ethernet, which generally creates compatibility issues and thus requires a dedicated network for the protocol.
Layer-2 protocols encapsulate audio data in standard Ethernet packets. Most can make use of standard Ethernet hubs and switches though some require that the network (or at least a VLAN) be dedicated to the audio distribution application.
Layer-3 protocols encapsulate audio data in OSI model layer 3 (network layer) packets. By definition it does not limit the choice of protocol to be the most popular layer-3 protocol, the Internet Protocol (IP). In some implementations, the layer-3 audio data packets are further packaged inside OSI model layer-4 (transport layer) packets, most commonly User Datagram Protocol (UDP) or Real-time Transport Protocol (RTP). Use of UDP or RTP to carry audio data enables them to be distributed through standard computer routers, thus a large distribution audio network can be built economically using commercial off-the-shelf equipment.
Although IP packets can traverse the Internet, most layer-3 protocols cannot provide reliable transmission over the Internet due to the limited bandwidth, significant End-to-end delay and packet loss that can be encountered by data flow over the Internet. For similar reasons, transmission of layer-3 audio over wireless LAN are also not supported by most implementations.
High quality digital audio distribution was patented in 1988 by Tareq Hoque at the MIT Media Lab. [15] The technology was licensed to several leading OEM audio and chip manufacturers that were further developed into commercial products.[ citation needed ]
RockNet by Riedel Communications, [16] uses Cat-5 cabling. Hydra2 by Calrec [17] uses Cat-5e cabling or fiber through SFP transceivers. [18]
MADI uses 75-ohm coaxial cable with BNC connectors or optical fibre to carry up to 64 channels of digital audio in a point-to-point connection. It is most similar in design to AES3, which can carry only two channels.
AES47 provides audio networking by passing AES3 audio transport over an ATM network using structured network cabling (both copper and fibre). This was used extensively by contractors supplying the BBC's wide area real-time audio connectivity around the UK.
Audio over IP differs in that it works at a higher layer, encapsulated within Internet Protocol. Some of these systems are usable on the Internet, but may not be as instantaneous, and are only as reliable as the network route — such as the path from a remote broadcast back to the main studio, or the studio/transmitter link (STL), the most critical part of the airchain. This is similar to VoIP, however AoIP is comparable to AoE for a small number of channels, which are usually also data-compressed. Reliability for permanent STL uses comes from the use of a virtual circuit, usually on a leased line such as T1/E1, or at minimum ISDN or DSL.
In broadcasting, and to some extent in studio and even live production, many manufacturers equip their own audio engines to be tied together. This may also be done with gigabit Ethernet and optical fibre rather than wire. This allows each studio to have its own engine, or for auxiliary studios to share an engine. By connecting them together, different sources can be shared among them.
AoE is not necessarily intended for wireless networks, thus the use of various 802.11 devices may or may not work with various (or any) AoE protocols. [19]
Ethernet is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.
Internetwork Packet Exchange (IPX) is the network layer protocol in the IPX/SPX protocol suite. IPX is derived from Xerox Network Systems' IDP. It also has the ability to act as a transport layer protocol.
The Internet protocol suite, commonly known as TCP/IP, is a framework for organizing the set of communication protocols used in the Internet and similar computer networks according to functional criteria. The foundational protocols in the suite are the Transmission Control Protocol (TCP), the User Datagram Protocol (UDP), and the Internet Protocol (IP). Early versions of this networking model were known as the Department of Defense (DoD) model because the research and development were funded by the United States Department of Defense through DARPA.
In computer networking, multicast is group communication where data transmission is addressed to a group of destination computers simultaneously. Multicast can be one-to-many or many-to-many distribution. Multicast should not be confused with physical layer point-to-multipoint communication.
The Open Systems Interconnection model is a reference model from the International Organization for Standardization (ISO) that "provides a common basis for the coordination of standards development for the purpose of systems interconnection." In the OSI reference model, the communications between systems are split into seven different abstraction layers: Physical, Data Link, Network, Transport, Session, Presentation, and Application.
A network switch is networking hardware that connects devices on a computer network by using packet switching to receive and forward data to the destination device.
A virtual local area network (VLAN) is any broadcast domain that is partitioned and isolated in a computer network at the data link layer. In this context, virtual refers to a physical object recreated and altered by additional logic, within the local area network. VLANs work by applying tags to network frames and handling these tags in networking systems – creating the appearance and functionality of network traffic that is physically on a single network but acts as if it is split between separate networks. In this way, VLANs can keep network applications separate despite being connected to the same physical network, and without requiring multiple sets of cabling and networking devices to be deployed.
A virtual private network (VPN) is a mechanism for creating a secure connection between a computing device and a computer network, or between two networks, using an insecure communication medium such as the public Internet.
The data link layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between nodes on a network segment across the physical layer. The data link layer provides the functional and procedural means to transfer data between network entities and may also provide the means to detect and possibly correct errors that can occur in the physical layer.
NetBIOS is an acronym for Network Basic Input/Output System. It provides services related to the session layer of the OSI model allowing applications on separate computers to communicate over a local area network. As strictly an API, NetBIOS is not a networking protocol. Operating systems of the 1980s ran NetBIOS over IEEE 802.2 and IPX/SPX using the NetBIOS Frames (NBF) and NetBIOS over IPX/SPX (NBX) protocols, respectively. In modern networks, NetBIOS normally runs over TCP/IP via the NetBIOS over TCP/IP (NBT) protocol. This results in each computer in the network having both an IP address and a NetBIOS name corresponding to a host name. NetBIOS is also used for identifying system names in TCP/IP (Windows). Simply stated, it is a protocol that allows communication of data for files and printers through the Session Layer of the OSI Model in a LAN.
AES47 is a standard which describes a method for transporting AES3 professional digital audio streams over Asynchronous Transfer Mode (ATM) networks.
The Precision Time Protocol (PTP) is a protocol used to synchronize clocks throughout a computer network. On a local area network, it achieves clock accuracy in the sub-microsecond range, making it suitable for measurement and control systems. PTP is employed to synchronize financial transactions, mobile phone tower transmissions, sub-sea acoustic arrays, and networks that require precise timing but lack access to satellite navigation signals.
A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.
In computer networking, an Ethernet frame is a data link layer protocol data unit and uses the underlying Ethernet physical layer transport mechanisms. In other words, a data unit on an Ethernet link transports an Ethernet frame as its payload.
EtherNet/IP is an industrial network protocol that adapts the Common Industrial Protocol (CIP) to standard Ethernet. EtherNet/IP is one of the leading industrial protocols in the United States and is widely used in a range of industries including factory, hybrid and process. The EtherNet/IP and CIP technologies are managed by ODVA, Inc., a global trade and standards development organization founded in 1995 with over 300 corporate members.
RTP-MIDI is a protocol to transport MIDI messages within Real-time Transport Protocol (RTP) packets over Ethernet and WiFi networks. It is completely open and free, and is compatible both with LAN and WAN application fields. Compared to MIDI 1.0, RTP-MIDI includes new features like session management, device synchronization and detection of lost packets, with automatic regeneration of lost data. RTP-MIDI is compatible with real-time applications, and supports sample-accurate synchronization for each MIDI message.
AES67 is a technical standard for audio over IP and audio over Ethernet (AoE) interoperability. The standard was developed by the Audio Engineering Society and first published in September 2013. It is a layer 3 protocol suite based on existing standards and is designed to allow interoperability between various IP-based audio networking systems such as RAVENNA, Livewire, Q-LAN and Dante.
Audio Video Bridging (AVB) is a common name for the set of technical standards which provide improved synchronization, low-latency, and reliability for switched Ethernet networks. AVB embodies the following technologies and standards:
AES50 is an Audio over Ethernet protocol for multichannel digital audio. It is defined in the AES50-2011 standard for High-resolution multi-channel audio interconnection (HRMAI).
Q-LAN updated to PTPv2 approximately two years ago.