Industrial Ethernet (IE) is the use of Ethernet in an industrial environment with protocols that provide determinism and real-time control. [1] Protocols for industrial Ethernet include EtherCAT, EtherNet/IP, PROFINET, POWERLINK, SERCOS III, CC-Link IE, and Modbus TCP. [1] [2] Many industrial Ethernet protocols use a modified media access control (MAC) layer to provide low latency and determinism. [1] Some microprocessors provide industrial Ethernet support.
Industrial Ethernet can also refer to the use of standard Ethernet protocols with rugged connectors and extended temperature switches in an industrial environment, for automation or process control. Components used in plant process areas must be designed to work in harsh environments of temperature extremes, humidity, and vibration that exceed the ranges for information technology equipment intended for installation in controlled environments. The use of fiber-optic Ethernet variants reduces the problems of electrical noise and provides electrical isolation.
Some industrial networks emphasized deterministic delivery of transmitted data, whereas Ethernet used collision detection which made transport time for individual data packets difficult to estimate with increasing network traffic. Typically, industrial uses of Ethernet employ full-duplex standards and other methods so that collisions do not unacceptably influence transmission times.
Industrial use requires consideration of the environment in which the equipment must operate. Factory equipment must tolerate a wider range of temperature, vibration, physical contamination and electrical noise than equipment installed in dedicated information-technology wiring closets. Since critical process control may rely on an Ethernet link, economic cost of interruptions may be high and high availability is therefore an essential criterion. Industrial Ethernet networks must interoperate with both current and legacy systems, and must provide predictable performance and maintainability. In addition to physical compatibility and low-level transport protocols, a practical industrial Ethernet system must also provide interoperability of higher levels of the OSI model. An industrial network must provide security both from intrusions from outside the plant, and from inadvertent or unauthorized use within the plant. [3]
When an industrial network must connect to an office network or external networks, a firewall system can be inserted to control exchange of data between the networks. This network separation preserves the performance and reliability of the industrial network.
Industrial environments are often much harsher, often subject to oil sprays, water sprays, and physical vibrations, so often industrial Ethernet requires a more rugged and watertight connector on one or both ends of the Cat 5 or Cat 6 cable, such as M12 connectors or M8 connectors, rather than the 8P8C connectors commonly used in homes and businesses. [4] [5]
Programmable logic controllers (PLCs) communicate using one of several possible open or proprietary protocols, such as EtherNet/IP, EtherCAT, Modbus, Sinec H1, Profibus, CANopen, DeviceNet or FOUNDATION Fieldbus. The idea to use standard Ethernet makes these systems more interoperable.
Some of the advantages over other types of industrial network include:
Difficulties of using industrial Ethernet include:
A distributed control system (DCS) is a computerized control system for a process or plant usually with many control loops, in which autonomous controllers are distributed throughout the system, but there is no central operator supervisory control. This is in contrast to systems that use centralized controllers; either discrete controllers located at a central control room or within a central computer. The DCS concept increases reliability and reduces installation costs by localizing control functions near the process plant, with remote monitoring and supervision.
Modbus or MODBUS is a client/server data communications protocol in the application layer. It was originally designed for use with its programmable logic controllers (PLCs), but has become a de facto standard communication protocol for communication between industrial electronic devices in a wide range of buses and networks.
A Process Control Network (PCN) is a communications network layer that is a part of the Industrial Automation networks in Process Industries. This network is used to transmit instructions and data between control and measurement units and Supervisory Control and Data Acquisition (SCADA) equipment.
A fieldbus is a member of a family of industrial digital communication networks used for real-time distributed control. Fieldbus profiles are standardized by the International Electrotechnical Commission (IEC) as IEC 61784/61158.
A terminal server connects devices with a serial port to a local area network (LAN). Products marketed as terminal servers can be very simple devices that do not offer any security functionality, such as data encryption and user authentication. The primary application scenario is to enable serial devices to access network server applications, or vice versa, where security of the data on the LAN is not generally an issue. There are also many terminal servers on the market that have highly advanced security functionality to ensure that only qualified personnel can access various servers and that any data that is transmitted across the LAN, or over the Internet, is encrypted. Usually, companies that need a terminal server with these advanced functions want to remotely control, monitor, diagnose and troubleshoot equipment over a telecommunications network.
Fieldbus Foundation was an organization dedicated to a single international, interoperable fieldbus standard. It was established in September 1994 by a merger of WorldFIP North America and the Interoperable Systems Project (ISP). Fieldbus Foundation was a not-for-profit trade consortium that consisted of more than 350 of the world's suppliers and end users of process control and manufacturing automation products. Working together those companies made contributions to the IEC/ISA/FDI and other fieldbus standards development.
Foundation Fieldbus is an all-digital, serial, two-way communications system that serves as the base-level network in a plant or factory automation environment. It is an open architecture, developed and administered by FieldComm Group.
Architecture for Control Networks (ACN) is a suite of network protocols for control of entertainment technology equipment, particularly as used in live performance or large-scale installations. For example, lighting, audio or special effects equipment. ACN is maintained by Entertainment Services and Technology Association and its first official release was ANSI Standard E1.17-2006 - Entertainment Technology - Architecture for Control Networks. The standard was subsequently revised and released as ANSI E1.17-2010.
Profinet is an industry technical standard for data communication over Industrial Ethernet, designed for collecting data from, and controlling equipment in industrial systems, with a particular strength in delivering data under tight time constraints. The standard is maintained and supported by Profibus and Profinet International, an umbrella organization headquartered in Karlsruhe, Germany.
EtherCAT is an Ethernet-based fieldbus system developed by Beckhoff Automation. The protocol is standardized in IEC 61158 and is suitable for both hard and soft real-time computing requirements in automation technology.
Foundation Fieldbus H1 is one of the FOUNDATION fieldbus protocol versions. Foundation H1 (31.25 kbit/s) is a bi-directional communications protocol used for communications among field devices and to the control system. It utilizes either twisted pair, or fiber media to communicate between multiple nodes (devices) and the controller. The controller requires only one communication point to communicate with up to 32 nodes, this is a significant improvement over the standard 4–20 mA communication method, which requires a separate connection point for each communication device on the controller system.
EtherNet/IP is an industrial network protocol that adapts the Common Industrial Protocol (CIP) to standard Ethernet. EtherNet/IP is one of the leading industrial protocols in the United States and is widely used in a range of industries including factory, hybrid and process. The EtherNet/IP and CIP technologies are managed by ODVA, Inc., a global trade and standards development organization founded in 1995 with over 300 corporate members.
Sercos III is the third generation of the Sercos interface, a standardized open digital interface for the communication between industrial controls, motion devices, input/output devices (I/O), and Ethernet nodes, such as PCs. Sercos III applies the hard real-time features of the Sercos interface to Ethernet. It is based upon the Ethernet standard. Work began on Sercos III in 2003, with vendors releasing first products supporting it in 2005.
openSAFETY is a communications protocol used to transmit information that is crucial for the safe operation of machinery in manufacturing lines, process plants, or similar industrial environments. Such information may be e.g. an alert signal triggered when someone or something has breached a light curtain on a factory floor. While traditional safety solutions rely on dedicated communication lines connecting machinery and control systems via special relays, openSAFETY does not need any extra cables reserved for safety-related information. It is a bus-based protocol that allows for passing on safety data over existing Industrial Ethernet connections between end devices and higher-level automation systems – connections principally established and used for regular monitoring and control purposes. Unlike other bus-based safety protocols that are suitable for use only with a single or a few specific Industrial Ethernet implementations and are incompatible with other systems, openSAFETY works with a wide range of different Industrial Ethernet variants.
A universal gateway is a device that transacts data between two or more data sources using communication protocols specific to each. Sometimes called a universal protocol gateway, this class of product is designed as a computer appliance, and is used to connect data from one automation system to another.
Media Redundancy Protocol (MRP) is a data network protocol standardized by the International Electrotechnical Commission as IEC 62439-2. It allows rings of Ethernet switches to overcome any single failure with recovery time much faster than achievable with Spanning Tree Protocol. It is suitable to most industrial Ethernet applications.
SoftEther VPN is free open-source, cross-platform, multi-protocol VPN client and VPN server software, developed as part of Daiyuu Nobori's master's thesis research at the University of Tsukuba. VPN protocols such as SSL VPN, L2TP/IPsec, OpenVPN, and Microsoft Secure Socket Tunneling Protocol are provided in a single VPN server. It was released using the GPLv2 license on January 4, 2014. The license was switched to Apache License 2.0 on January 21, 2019.
Cyphal is a lightweight protocol designed for reliable intra-vehicle communications using various communications transports, originally destined for CAN bus, but targeting various network types in subsequent revisions. OpenCyphal is an open-source project that aims to provide MIT-licensed implementations of the Cyphal protocol. The project was known as UAVCAN prior to rebranding in March 2022.
IO-Link is a short distance, bi-directional, digital, point-to-point, wired, industrial communications networking standard used for connecting digital sensors and actuators to either a type of industrial fieldbus or a type of industrial Ethernet. Its objective is to provide a technological platform that enables the development and use of sensors and actuators that can produce and consume enriched sets of data that in turn can be used for economically optimizing industrial automated processes and operations. The technology standard is managed by the industry association Profibus and Profinet International.