IEC 60870

Last updated

In electrical engineering and power system automation, the International Electrotechnical Commission 60870 standards define systems used for telecontrol (supervisory control and data acquisition). Such systems are used for controlling electric power transmission grids and other geographically widespread control systems. By use of standardized protocols, equipment from many different suppliers can be made to interoperate. IEC standard 60870 has six parts, defining general information related to the standard, operating conditions, electrical interfaces, performance requirements, and data transmission protocols. The 60870 standards are developed by IEC Technical Committee 57 (Working Group 03).

Contents

List of IEC 60870 parts

IEC 60870-5

IEC 60870 part 5, known as Transmission protocols, [1] provides a communication profile for sending basic telecontrol messages between two systems, which uses permanent directly connected data circuits between the systems. The IEC TC 57 WG3 have developed a protocol standard for telecontrol, teleprotection, and associated telecommunications for electric power systems. The result of this work is IEC 60870-5. Five documents specify the base IEC 60870-5:

The IEC TC 57 has also generated companion standards:

IEC 60870-5-101/102/103/104 are companion standards generated for basic telecontrol tasks, transmission of integrated totals, data exchange from protection equipment & network access of IEC101 respectively.

IEC 60870-6

IEC TC 57 WG3 also generated standards for telecontrol protocols compatible with ISO standards and ITU-T recommendations. These standards include:

Related Research Articles

<span class="mw-page-title-main">Remote terminal unit</span> Computer peripheral to collect telemetry data

A remote terminal unit (RTU) is a microprocessor-controlled electronic device that interfaces objects in the physical world to a distributed control system or SCADA system by transmitting telemetry data to a master system, and by using messages from the master supervisory system to control connected objects. Other terms that may be used for RTU are remote telemetry unit and remote telecontrol unit.

<span class="mw-page-title-main">IEC 62056</span>

IEC 62056 is a set of standards for electricity metering data exchange by International Electrotechnical Commission. The IEC 62056 standards are the international standard versions of the DLMS/COSEM specification.

IEC 61850 is an international standard defining communication protocols for intelligent electronic devices at electrical substations. It is a part of the International Electrotechnical Commission's (IEC) Technical Committee 57 reference architecture for electric power systems. The abstract data models defined in IEC 61850 can be mapped to a number of protocols. Current mappings in the standard are to Manufacturing Message Specification (MMS), GOOSE [see section 3, Terms and definitions, term 3.65 on page 14], SV or SMV, and soon to web services. In the previous version of the standard, GOOSE stood for "Generic Object Oriented Substation Event", but this old definition is still very common in IEC 61850 documentation. These protocols can run over TCP/IP networks or substation LANs using high speed switched Ethernet to obtain the necessary response times below four milliseconds for protective relaying.

<span class="mw-page-title-main">DNP3</span> Computer network protocol

Distributed Network Protocol 3 (DNP3) is a set of communications protocols used between components in process automation systems. Its main use is in utilities such as electric and water companies. Usage in other industries is not common. It was developed for communications between various types of data acquisition and control equipment. It plays a crucial role in SCADA systems, where it is used by SCADA Master Stations, Remote Terminal Units (RTUs), and Intelligent Electronic Devices (IEDs). It is primarily used for communications between a master station and RTUs or IEDs. ICCP, the Inter-Control Center Communications Protocol, is used for inter-master station communications. Competing standards include the older Modbus protocol and the newer IEC 61850 protocol.

IEC 60870 part 6 in electrical engineering and power system automation, is one of the IEC 60870 set of standards which define systems used for telecontrol in electrical engineering and power system automation applications. The IEC Technical Committee 57 have developed part 6 to provide a communication profile for sending basic telecontrol messages between two systems which is compatible with ISO standards and ITU-T recommendations.

IEC 61334, known as Distribution automation using distribution line carrier systems, is a standard for low-speed reliable power line communications by electricity meters, water meters and SCADA. It is also known as spread frequency-shift keying (S-FSK) and was formerly known as IEC 1334 before IEC's most recent renumbering. It is actually a series of standards describing the researched physical environment of power lines, a well-adapted physical layer, a workable low-power media access layer, and a management interface. Related standards use the physical layer, but not the higher layers.

IEC 62351 is a standard developed by WG15 of IEC TC57. This is developed for handling the security of TC 57 series of protocols including IEC 60870-5 series, IEC 60870-6 series, IEC 61850 series, IEC 61970 series & IEC 61968 series. The different security objectives include authentication of data transfer through digital signatures, ensuring only authenticated access, prevention of eavesdropping, prevention of playback and spoofing, and intrusion detection.

IEC 60870 part 5 is one of the IEC 60870 set of standards which define systems used for telecontrol in electrical engineering and power system automation applications. Part 5 provides a communication profile for sending basic telecontrol messages between two systems, which uses permanent directly connected data circuits between the systems. The IEC Technical Committee 57 have developed a protocol standard for telecontrol, teleprotection, and associated telecommunications for electric power systems. The result of this work is IEC 60870-5. Five documents specify the base IEC 60870-5:

The Open Smart Grid Protocol (OSGP) is a family of specifications published by the European Telecommunications Standards Institute (ETSI) used in conjunction with the ISO/IEC 14908 control networking standard for smart grid applications. OSGP is optimized to provide reliable and efficient delivery of command and control information for smart meters, direct load control modules, solar panels, gateways, and other smart grid devices. With over 5 million OSGP based smart meters and devices deployed worldwide it is one of the most widely used smart meter and smart grid device networking standards.

References

  1. Gordon R. Clarke et al, Practical modern SCADA protocols: DNP3, 60870.5 and related systems, Newnes, 2004 ISBN   0-7506-5799-5