C-Bus (protocol)

Last updated

C-Bus is a communications protocol based on a seven-layer OSI model for home and building automation that can handle cable lengths up to 1000 metres using Cat-5 cable. It is used in Australia, New Zealand, Asia, the Middle East, Russia, United States, South Africa, the UK and, other parts of Europe including Greece and Romania. C-Bus was created by Clipsal Australia's Clipsal Integrated Systems [1] division (now part of Schneider Electric) for use with its brand of home automation and building lighting control system. C-Bus has been briefly available in the United States but Schneider Electric has now discontinued sales in the United States. [2]

Contents

C-Bus is used in the control of domotics, or home automation systems, as well as commercial building lighting control systems. Unlike the more common X10 protocol which uses a signal imposed upon the AC power line, C-Bus uses a dedicated low-voltage cable or two-way wireless network to carry command and control signals. This improves the reliability of command transmission and makes C-Bus far more suitable for large, commercial applications than X10.

C-Bus system

The C-Bus system can be used to control lighting and other electrical systems and products automatically or via remote control and can also be interfaced to a home security system, AV products or other electrical items. The C-Bus system is available in a wired version and a wireless version, with a gateway available to allow messages to be sent between wired and wireless networks.

The wired C-Bus system uses a standard category 5 UTP (Unshielded Twisted Pair) cable as its network communications cable and does not require end-of-line termination. Clipsal manufactures a specific category 5 cable for use within electrical distribution panels. This cable has a pink outer sheath which is rated to ensure adequate electrical isolation between the mains voltages found in distribution panels and the extra low voltage C-Bus. Outside of distribution panels standard category 5 UTP cable can be used.

The category 5 C-Bus network wiring uses a free topology architecture. The maximum length of cable used on a C-Bus network is 1000 metres; however, this is easily extended using C-Bus Network Bridges. Up to 100 units can be installed on a C-Bus network and this can also be extended using Network Bridges.

The maximum number of C-Bus networks in one installation is 255 (note that this limitation does not apply if a C-Bus Ethernet Interface is used, the system size is then limited to IP Addressing only). The maximum number of networks connected in series to the local network via Network Bridges is seven (i.e. using six network bridges).

Each standard C-Bus unit requires 18mA @ 15-36Vdc to operate, however some C-Bus units require up to 40mA.

More than one C-Bus power supply can be connected to a C-Bus network to provide sufficient power to the C-Bus units, the C-Bus power supplies will share the load evenly.

Each C-Bus network requires a network burden if there are insufficient C-Bus units on the network. This network burden can be enabled on C-Bus output units through software or a hardware burden can be connected to the network.

Each C-Bus network requires at least one system clock-generating unit for data synchronization.

The isolation between the main supply circuitry and the 36 V DC C-Bus circuitry is greater than 3.5 kV. This is achieved using double wound transformers and opto isolators. This means the C-Bus wiring, connections and circuitry can be considered Extra Low Voltage.

Wiring design of C-Bus systems

With conventional wiring, the mains power (120 / 230 V) is wired from the distribution board (DB) to the load (for example, a ceiling light) via a wall switch.

CBus Conventional Wiring.gif

In C-Bus systems, the connections between the DB and (for example) the ceiling lights, and between the DB and the junction box (wall switch) are completely separate. In addition, there are no connections between the junction box and the respective ceiling lights.

CBus Wiring.gif

The power control in a C-Bus system lies in a “Dimmer” or “Relay” which is installed in the DB and replaces the traditional switch used in conventional wiring. This Dimmer (or Relay) has a 120/230 V Line interconnection directly to the ceiling light and a neutral connection back from the ceiling light to the Dimmer. The Dimmer will control the light directly and will receive its commands from another device on the C-Bus network (for example, a wall-mounted light switch/keypad). This wall-mounted light switch would not be connected to any load whatsoever; it would be directly connected with the Dimmer with a control/signaling cable. The Dimmers normally come as 4-, 8- or 12-channel DIN-rail mounted devices.

C-Bus interoperability

As of 9 December 2008, Clipsal opened its C-Bus protocols to anyone who wants to interact with it programmatically. [3] [4]

Using one of Clipsal's C-Bus interface modules (PCI for RS232 or USB and CNI for Ethernet TCP/IP), you can interact with other home automation systems, or with applications on devices like Android, iPad or iPhone.

The C-Bus protocol was developed using the OSI 7-layer reference model. C-Bus supports several interfaces such as RS232 and TCP/IP and makes these protocols available to third-party companies.

C-Bus interface specifications are available through the C-Bus Enabled Program, however it is necessary to agree to a license agreement.

Geographic use of C-Bus and compatibility

C-Bus as a home automation and commercial building lighting control system is used primarily in Australia, China and New Zealand [ citation needed ]. C-Bus is currently available in Asia, the United Kingdom (installed [ permanent dead link ] in Number 10 Downing Street, Wembley Stadium and Manchester City Football Club), Russia and a number of other countries are now using this system. The C-Bus wireless (RF) system and wired C-Bus Occupancy Controllers can be retrofitted using the existing mains wiring.

C-Bus is compatible with Translink C-Bus Gateway, OPC, DALI, DSI, BACnet, TCP/IP, Control4, Crestron, AMX, RTI, LonWorks, ModBus, Charmed Quark Controller, the Comfort Intelligent Home System and some other protocols through interfaces.

Related Research Articles

<span class="mw-page-title-main">X10 (industry standard)</span> Home automation communication protocol

X10 is a protocol for communication among electronic devices used for home automation (domotics). It primarily uses power line wiring for signaling and control, where the signals involve brief radio frequency bursts representing digital information. A wireless radio-based protocol transport is also defined.

<span class="mw-page-title-main">KNX</span> Standard in building automation

KNX is an open standard for commercial and residential building automation. KNX devices can manage lighting, blinds and shutters, HVAC, security systems, energy management, audio video, white goods, displays, remote control, etc. KNX evolved from three earlier standards; the European Home Systems Protocol (EHS), BatiBUS, and the European Installation Bus.

<span class="mw-page-title-main">CAN bus</span> Standard for serial communication between devices without host computer

A controller area network (CAN) is a vehicle bus standard designed to enable efficient communication primarily between electronic control units (ECUs). Originally developed to reduce the complexity and cost of electrical wiring in automobiles through multiplexing, the CAN bus protocol has since been adopted in various other contexts. This broadcast-based, message-oriented protocol ensures data integrity and prioritization through a process called arbitration, allowing the highest priority device to continue transmitting if multiple devices attempt to send data simultaneously, while others back off. Its reliability is enhanced by differential signaling, which mitigates electrical noise. Common versions of the CAN protocol include CAN 2.0, CAN FD, and CAN XL which vary in their data rate capabilities and maximum data payload sizes.

<span class="mw-page-title-main">DMX512</span> Digital communication network standard for controlling stage lighting and effects

DMX512 is a standard for digital communication networks that are commonly used to control lighting and effects. It was originally intended as a standardized method for controlling stage lighting dimmers, which, prior to DMX512, had employed various incompatible proprietary protocols. It quickly became the primary method for linking controllers to dimmers and special effects devices such as fog machines and intelligent lights.

<span class="mw-page-title-main">Dimmer</span> Engineering device

A dimmer is a device connected to a light fixture and used to lower the brightness of the light. By changing the voltage waveform applied to the lamp, it is possible to lower the intensity of the light output. Although variable-voltage devices are used for various purposes, the term dimmer is generally reserved for those intended to control light output from resistive incandescent, halogen, and compact fluorescent lamps (CFLs) and light-emitting diodes (LEDs). More specialized equipment is needed to dim fluorescent, mercury-vapor, solid-state, and other arc lighting.

A vehicle bus is a specialized internal communications network that interconnects components inside a vehicle. In electronics, a bus is simply a device that connects multiple electrical or electronic devices together. Special requirements for vehicle control such as assurance of message delivery, of non-conflicting messages, of minimum time of delivery, of low cost, and of EMF noise resilience, as well as redundant routing and other characteristics mandate the use of less common networking protocols. Protocols include Controller Area Network (CAN), Local Interconnect Network (LIN) and others. Conventional computer networking technologies are rarely used, except in aircraft, where implementations of the ARINC 664 such as the Avionics Full-Duplex Switched Ethernet are used. Aircraft that use Avionics Full-Duplex Switched Ethernet (AFDX) include the B787, the A400M and the A380. Trains commonly use Ethernet Consist Network (ECN). All cars sold in the United States since 1996 are required to have an On-Board Diagnostics connector, for access to the car's electronic controllers.

RS-485, also known as TIA-485(-A) or EIA-485, is a standard, originally introduced in 1983, defining the electrical characteristics of drivers and receivers for use in serial communications systems. Electrical signaling is balanced, and multipoint systems are supported. The standard is jointly published by the Telecommunications Industry Association and Electronic Industries Alliance (TIA/EIA). Digital communications networks implementing the standard can be used effectively over long distances and in electrically noisy environments. Multiple receivers may be connected to such a network in a linear, multidrop bus. These characteristics make RS-485 useful in industrial control systems and similar applications.

<span class="mw-page-title-main">Intercom</span> Voice communications system for use within a local area

An intercom, also called an intercommunication device, intercommunicator, or interphone, is a stand-alone voice communications system for use within a building, small collection of buildings or portably within a small coverage area, which functions independently of the public telephone network. Intercoms are generally mounted permanently in buildings and vehicles, but can also be detachable and portable. Intercoms can incorporate connections to public address loudspeaker systems, walkie talkies, telephones, and other intercom systems. Some intercom systems incorporate control of devices such as signal lights and door latches.

A fieldbus is a member of a family of industrial digital communication networks used for real-time distributed control. Fieldbus profiles are standardized by the International Electrotechnical Commission (IEC) as IEC 61784/61158.

<span class="mw-page-title-main">Industrial Ethernet</span> Use of Ethernet in an industrial environment

Industrial Ethernet (IE) is the use of Ethernet in an industrial environment with protocols that provide determinism and real-time control. Protocols for industrial Ethernet include EtherCAT, EtherNet/IP, PROFINET, POWERLINK, SERCOS III, CC-Link IE, and Modbus TCP. Many industrial Ethernet protocols use a modified media access control (MAC) layer to provide low latency and determinism. Some microprocessors provide industrial Ethernet support.

Building automation (BAS), also known as building management system (BMS) or building energy management system (BEMS), is the automatic centralized control of a building's HVAC, electrical, lighting, shading, access control, security systems, and other interrelated systems. Some objectives of building automation are improved occupant comfort, efficient operation of building systems, reduction in energy consumption, reduced operating and maintaining costs and increased security.

<span class="mw-page-title-main">Lighting control system</span> Intelligent network based lighting control

A lighting control system incorporates communication between various system inputs and outputs related to lighting control with the use of one or more central computing devices. Lighting control systems are widely used on both indoor and outdoor lighting of commercial, industrial, and residential spaces. Lighting control systems are sometimes referred to under the term smart lighting. Lighting control systems serve to provide the right amount of light where and when it is needed.

<span class="mw-page-title-main">Home network</span> Type of computer network

A home network or home area network (HAN) is a type of computer network that facilitates communication among devices within the close vicinity of a home. Devices capable of participating in this network, for example, smart devices such as network printers and handheld mobile computers, often gain enhanced emergent capabilities through their ability to interact. These additional capabilities can be used to increase the quality of life inside the home in a variety of ways, such as automation of repetitive tasks, increased personal productivity, enhanced home security, and easier access to entertainment.

<span class="mw-page-title-main">Digital Addressable Lighting Interface</span> Trademark for network-based product

Digital Addressable Lighting Interface (DALI) is a trademark for network-based products that control lighting. The underlying technology was established by a consortium of lighting equipment manufacturers as a successor for 1-10 V/0–10 V lighting control systems, and as an open standard alternative to several proprietary protocols. The DALI, DALI-2 and D4i trademarks are owned by the lighting industry alliance, DiiA.

Universal Powerline Bus (UPB) is a proprietary software protocol developed by Powerline Control Systems for power-line communication between devices used for home automation. Household electrical wiring is used to send digital data between UPB devices via pulse-position modulation.

<span class="mw-page-title-main">Track lighting</span>

Track lighting is a method of lighting where light fixtures are attached anywhere on a continuous track device which contains electrical conductors. This is in contrast to directly routing electrical wiring to individual light positions. Tracks can either be mounted to ceilings or walls, lengthwise down beams, or across rafters or joists. They can also be hung with rods from especially high places like vaulted ceilings.

oBIX is a standard for RESTful Web Services-based interfaces to building control systems. oBIX is about reading and writing data over a network of devices using XML and URIs, within a framework specifically designed for building automation.

Homes typically have several kinds of home wiring, including electrical wiring for lighting and power distribution, permanently installed and portable appliances, telephone, heating or ventilation system control, and increasingly for home theatre and computer networks.

A smart home hub, sometimes also referred to as a "smart hub", "gateway'", "bridge", "controller" or "coordinator", is a control center/centre for a smart home, and enables the components of a smart home to communicate and respond to each other via communication through a central point. The smart home hub can consist of dedicated computer appliance, software appliance, or software running on computer hardware, and makes it possible to gather configuration, automation and monitoring of a smart house by communicating and controlling different smart devices that consist of for example home appliances, sensors and relays or robots, many of which are commonly categorized under Internet of things.

References

  1. "Browse Clipsal's innovative electrical products and solutions | Product Catalogue - Clipsal by Schneider Electric".
  2. "Why can't I purchase Schneider Electric US Lighting Control products any more? | Schneider Electric USA". 10 August 2012.
  3. "Open C-Bus Serial Protocol Documents". Archived from the original on 2018-02-21. Retrieved 2011-02-27.
  4. "Home". cbus-enabled.com.