OpenTherm

Last updated

OpenTherm (OT) is a standard communications protocol used in central heating systems for the communication between a central heating appliances and a thermostatic controller. [1] As a standard, OpenTherm is independent of any single manufacturer. A controller from manufacturer A can in principle be used to control a boiler from manufacturer B. However, OpenTherm controllers and boilers do not always work properly together. The OpenTherm standard comprises a number of optional features and some devices may include manufacturer-specific features. The presence or absence of such features may impair compatibility with other OpenTherm devices.

Contents

History

OpenTherm Association
Formation1996;27 years ago (1996)
Headquarters Naarden, The Netherlands
Website https://www.opentherm.eu/

OpenTherm was founded in 1996 because multiple manufacturers needed a simple-to-use communicating system between room controller and boiler. It had to run, like the existing controllers, over the existing two wires, not polarity sensitive, without the use of batteries. For one British pound, Honeywell sold the first specification to the OpenTherm Association in November 1996.[ citation needed ] Shortly after, the first products appeared on the market. By 2008 the Association had grown to around 42 members and has regularly updated and improved the specification. Furthermore, the Association is also active in lobbying for the interests of its members and is also present at exhibitions like the ISH (Frankfurt) and the Mostra Convegno (Milan). As of 2016, the association has 53 members from around the world. [2]

OpenTherm appliances are mainly used in Europe. [3]

Design

Communication is digital and bi-directional between the controller (primary) and the boiler (secondary). Various commands and kinds of information can be transferred; however, the most basic command is to set the boiler's target water temperature. OpenTherm makes use of a traditional untwisted 2-wire cable between controller and boiler. The protocol is not polarity sensitive: wires can be swapped. [4] The maximum wiring length is 50 m up to maximum 2 x 5 ohm resistance. For backward compatibility with traditional switching thermostatic controllers, OpenTherm specified that if the two wires are connected together then the boiler will switch on.

Due to the secondary supplying power over the two wires, the controller does not require its own power connection. [4]

The primary sends out a 32-bit signal every second, to which the secondary sends an acknowledgement message: [4]

32-bit signal message components
Number of bits11348161
DescriptionStart bitParity bitMessage typeReservedData IDDataStop bit
Value01 if total number of 1 bits is uneven, otherwise 000000

Multi Point to Point

Specification 3.0 also describes how more than two devices can be connected by OpenTherm. Whilst OpenTherm is a point-to-point connection, an extra device (gateway) is added between the primary and the secondary. This gateway has 1 secondary and 1 (or more) primary interfaces. The gateway controls which data is passed to each secondary. An application example is a room temperature controller connected to a heat recovery unit, which is connected to a boiler. The heat recovery unit is then functioning as gateway. In another possible configuration, a thermostat or room controller is connected to a sequencer with further Opentherm interfaces connected to more than one boiler. The room controller can be a standard unit, since it only 'sees' one heat-producer. The sequencer includes additional software to increase or decrease the number of running boilers to match the actual heat demand. The sequencer also needs a sensor to measure the temperature of the combined output from the boilers and usually would also control a main circulation pump. What happens after a fault occurs (resequencing remaining units, passing fault messages through for display on the room controller, etc.) is also part of the sequencer functionality. (The hydraulic design of such a system must also take account of different combinations of boilers running at the same time: a Low Loss Header / Hydraulic Separator is usually included to combine the flows from the boilers.)

Variants

OpenTherm/Plus (OT/+)

The two wires are used both to supply power to the controller and for bidirectional digital communication between the controller and the boiler. The minimum available power is 35 mW. When using OpenTherm Smart Power this can, by primary request, also be 136 mW (medium power) or 255 mW (high power). The controller transmits to the boiler by sending a Manchester-encoded sequence in the Voltage domain. The boiler transmits data back to the controller in the current domain. OpenTherm specifies a maximum communications interval of one second. The data in the communication packet is functionally specified and is called OpenTherm-ID (OT-ID). 256 OT-IDs are available, 128 are reserved for OEM use. The other 128 are reserved, 90 of them are functionally specified. (OT specification v3.0)

OpenTherm/Light (OT/-)

When OT/- is used the primary generates a PWM voltage signal, representing the boiler water temperature set point. The boiler current signal indicates the status of the boiler: error, no error. Due to the limited possibilities OT/- is rarely used .[ citation needed ]

OpenTherm Smart Power

On June 16, 2008, OpenTherm specification 3.0 was approved by the association. This version introduces OpenTherm Smart Power. The primary can request the secondary to change the available power to low, medium or high power. With this primary manufacturers can add more functionality to their products (backlight or extra sensors).

Certification

Manufacturers are allowed to market OpenTherm products when they comply with some rules of the OpenTherm association. Most importantly the manufacturer has to be an OpenTherm member, and the product must be tested by an independent testing body. By handing over the test report and a Declaration of Conformity to the association, the manufacturer is allowed to use the OpenTherm logo.

See also

Related Research Articles

<span class="mw-page-title-main">MIDI</span> Electronic musical instrument connection standard

MIDI is a technical standard that describes a communication protocol, digital interface, and electrical connectors that connect a wide variety of electronic musical instruments, computers, and related audio devices for playing, editing, and recording music.

<span class="mw-page-title-main">Programmable logic controller</span> Programmable digital computer used to control machinery

A programmable logic controller (PLC) or programmable controller is an industrial computer that has been ruggedized and adapted for the control of manufacturing processes, such as assembly lines, machines, robotic devices, or any activity that requires high reliability, ease of programming, and process fault diagnosis.

<span class="mw-page-title-main">KNX</span> Standard in building automation

KNX is an open standard for commercial and residential building automation. KNX devices can manage lighting, blinds and shutters, HVAC, security systems, energy management, audio video, white goods, displays, remote control, etc. KNX evolved from three earlier standards; the European Home Systems Protocol (EHS), BatiBUS, and the European Installation Bus.

A Controller Area Network is a vehicle bus standard designed to allow microcontrollers and devices to communicate with each other's applications without a host computer. It is a message-based protocol, designed originally for multiplex electrical wiring within automobiles to save on copper, but it can also be used in many other contexts. For each device, the data in a frame is transmitted serially but in such a way that if more than one device transmits at the same time, the highest priority device can continue while the others back off. Frames are received by all devices, including by the transmitting device.

<span class="mw-page-title-main">Thermostat</span> Component which maintains a setpoint temperature

A thermostat is a regulating device component which senses the temperature of a physical system and performs actions so that the system's temperature is maintained near a desired setpoint.

<span class="mw-page-title-main">Control system</span> System that manages the behavior of other systems

A control system manages, commands, directs, or regulates the behavior of other devices or systems using control loops. It can range from a single home heating controller using a thermostat controlling a domestic boiler to large industrial control systems which are used for controlling processes or machines. The control systems are designed via control engineering process.

<span class="mw-page-title-main">DMX512</span> Digital communication network standard for controlling stage lighting and effects

DMX512 is a standard for digital communication networks that are commonly used to control lighting and effects. It was originally intended as a standardized method for controlling stage lighting dimmers, which, prior to DMX512, had employed various incompatible proprietary protocols. It quickly became the primary method for linking controllers to dimmers and special effects devices such as fog machines and intelligent lights.

<span class="mw-page-title-main">Water heating</span> Thermodynamic process that uses energy sources to heat water

Water heating is a heat transfer process that uses an energy source to heat water above its initial temperature. Typical domestic uses of hot water include cooking, cleaning, bathing, and space heating. In industry, hot water and water heated to steam have many uses.

The thermal design power (TDP), sometimes called thermal design point, is the maximum amount of heat generated by a computer chip or component that the cooling system in a computer is designed to dissipate under any workload.

<span class="mw-page-title-main">Fire-tube boiler</span> Type of boiler

A fire-tube boiler is a type of boiler invented in 1828 by Mark Seguin, in which hot gases pass from a fire through one or more tubes running through a sealed container of water. The heat of the gases is transferred through the walls of the tubes by thermal conduction, heating the water and ultimately creating steam.

A fieldbus is a member of a family of industrial digital communication networks used for real-time distributed control. Fieldbus profiles are standardized by the International Electrotechnical Commission (IEC) as IEC 61784/61158.

<span class="mw-page-title-main">Thermostatic radiator valve</span> Self-regulating valve to control hot water flow

A thermostatic radiator valve (TRV) is a self-regulating valve fitted to hot water heating system radiator, to control the temperature of a room by changing the flow of hot water to the radiator.

Building automation(BAS), also known as building management system (BMS) or building energy management system (BEMS), is the automatic centralized control of a building's HVAC (heating, ventilation and air conditioning), electrical, lighting, shading, access control, security systems, and other interrelated systems. Some objectives of building automation are improved occupant comfort, efficient operation of building systems, reduction in energy consumption, reduced operating and maintaining costs and increased security.

<span class="mw-page-title-main">Fan heater</span> Heat producing machine to increase temperature of an enclosed space

A fan heater, also called a blow heater, is a heater that works by using a fan to pass air over a heat source. This heats up the air, which then leaves the heater, warming up the surrounding room. They can heat an enclosed space such as a room faster than a heater without a fan, but like any fan, create a degree of noise.

<span class="mw-page-title-main">Digital Addressable Lighting Interface</span> Trademark for network-based product

Digital Addressable Lighting Interface (DALI) is a trademark for network-based products that control lighting. The underlying technology was established by a consortium of lighting equipment manufacturers as a successor for 1-10 V/0–10 V lighting control systems, and as an open standard alternative to several proprietary protocols. The DALI, DALI-2 and D4i trademarks are owned by the lighting industry alliance, DiiA.

<span class="mw-page-title-main">Programmable thermostat</span>

A programmable thermostat is a thermostat which is designed to adjust the temperature according to a series of programmed settings that take effect at different times of the day. Programmable thermostats are also known as setback thermostats or clock thermostats.

<span class="mw-page-title-main">Fan coil unit</span> HVAC device

A fan coil unit (FCU), also known as a Vertical Fan Coil-Unit (VFC), is a device consisting of a heat exchanger (coil) and a fan. FCUs are commonly used in HVAC systems of residential, commercial, and industrial buildings that use ducted split air conditioning or with central plant cooling. FCUs are typically connected to ductwork and a thermostat to regulate the temperature of one or more spaces and to assist the main air handling unit for each space if used with chillers. The thermostat controls the fan speed and/or the flow of water or refrigerant to the heat exchanger using a control valve.

<span class="mw-page-title-main">Heating film</span>

Heating films are a method of electric resistance heating, providing relatively low temperatures over large areas. Heating films can be directly installed to provide underfloor heating, wall radiant heating and ceiling radiant heating.

<span class="mw-page-title-main">Nest Thermostat</span> Smart thermostat

The Nest Thermostat is a smart thermostat developed by Google Nest and designed by Tony Fadell, Ben Filson, and Fred Bould. It is an electronic, programmable, and self-learning Wi-Fi-enabled thermostat that optimizes heating and cooling of homes and businesses to conserve energy.

MicroTCA is a modular, open standard, created and maintained by the PCI Industrial Computer Manufacturers Group (PICMG). It provides the electrical, mechanical, thermal and management specifications to create a switched fabric computer system, using Advanced Mezzanine Cards (AMC), connected directly to a backplane. MicroTCA is a descendant of the AdvancedTCA standard.

References

  1. Wilamowski, Bogdan M.; Irwin, J. David (2018-10-03). Industrial Communication Systems. CRC Press. ISBN   978-1-351-83432-2.
  2. "Members OpenTherm Association". OpenTherm. OpenTherm Association. Retrieved 28 February 2016.
  3. Zurawski, Richard (2017-12-19). Embedded Systems Handbook: Networked Embedded Systems. CRC Press. ISBN   978-1-4398-0762-0.
  4. 1 2 3 Buiting, Jan (2003). 308 Circuits. Elektor International Media. ISBN   978-0-905705-66-8.