Ice storage air conditioning

Last updated

Ice storage air conditioning is the process of using ice for thermal energy storage. This is practical because of water's large heat of fusion: one metric ton of water (one cubic metre) can store 334 megajoules (MJ) (317,000 BTU) of energy, equivalent to 93 kWh (26.4 ton-hours).

Thermal energy storage achieved with greatly differing technologies that collectively accommodate a wide range of needs; allows excess thermal energy to be collected for later use

Thermal energy storage (TES) is achieved with widely differing technologies. Depending on the specific technology, it allows excess thermal energy to be stored and used hours, days, or months later, at scales ranging from individual process, building, multiuser-building, district, town, or region. Usage examples are the balancing of energy demand between daytime and nighttime, storing summer heat for winter heating, or winter cold for summer air conditioning. Storage media include water or ice-slush tanks, masses of native earth or bedrock accessed with heat exchangers by means of boreholes, deep aquifers contained between impermeable strata; shallow, lined pits filled with gravel and water and insulated at the top, as well as eutectic solutions and phase-change materials.

Contents

Ice was originally obtained from mountains or cut from frozen lakes and transported to cities for use as a coolant. The original definition of a "ton of cooling capacity" (heat flow) was the heat needed to melt one ton of ice in a 24-hour period. This heat flow is what one would expect in a 3,000-square-foot (280 m2) house in Boston in the summer. This definition has since been replaced by less archaic units: one ton HVAC capacity is equal to 12,000 BTU per hour. A small storage facility can hold enough ice to cool a large building from one day to one week, whether that ice is produced by anhydrous ammonia chillers or hauled in by horse-drawn carts.

A ton of refrigeration (TR), also called a refrigeration ton (RT), is a unit of power used in some countries to describe the heat-extraction capacity of refrigeration and air conditioning equipment. It is defined as the rate of heat transfer that results in the freezing of 1 short ton of pure ice at 0 °C (32 °F) in 24 hours.

Ground freezing can also be utilized; this may be done in ice form where the ground is saturated. Systems will also work with pure rock. Wherever ice forms, the ice formation's heat of fusion is not used, as the ice remains solid throughout the process. The method based on ground freezing is widely used for mining and tunneling to solidify unstable ground during excavations. The ground is frozen using bore holes with concentric pipes that carry brine from a chiller at the surface. Cold is extracted in a similar way using brine and used in the same way as for conventional ice storage, normally with a brine-to-liquid heat exchanger, to bring the working temperatures up to usable levels at higher volumes. The frozen ground can stay cold for months or longer, allowing cold storage for extended periods at negligible structure cost. [1] [2]

Ground freezing

Ground freezing is a construction technique used in circumstances where soil needs to be stabilized so it will not collapse next to excavations, or to prevent contaminants spilled into soil from being leached away. Ground freezing has been used for at least one hundred years.

Replacing existing air conditioning systems with ice storage offers a cost-effective energy storage method, enabling surplus wind energy and other such intermittent energy sources to be stored for use in chilling at a later time, possibly months later.

Air conditioning

The most widely used form of this technology can be found in campus-wide air conditioning or chilled water systems of large buildings. Air conditioning systems, especially in commercial buildings, are the biggest contributors to peak electrical loads seen on hot summer days in various countries. In this application, a standard chiller runs at night to produce an ice pile. Water then circulates through the pile during the day to produce chilled water that would normally be the chiller's daytime output.

A partial storage system minimizes capital investment by running the chillers nearly 24 hours a day. At night, they produce ice for storage and during the day they chill water for the air conditioning system. Water circulating through the melting ice augments their production. Such a system usually runs in ice-making mode for 16 to 18 hours a day and in ice-melting mode for six hours a day. Capital expenditures are minimized because the chillers can be just 40 - 50% of the size needed for a conventional design. Ice storage sufficient to store half a day's rejected heat is usually adequate.

A full storage system minimizes the cost of energy to run that system by entirely shutting off the chillers during peak load hours. The capital cost is higher, as such a system requires somewhat larger chillers than those from a partial storage system, and a larger ice storage system. Ice storage systems are inexpensive enough that full storage systems are often competitive with conventional air conditioning designs.[ citation needed ]

The air conditioning chillers' efficiency is measured by their coefficient of performance (COP). In theory, thermal storage systems could make chillers more efficient because heat is discharged into colder nighttime air rather than warmer daytime air. In practice, heat loss overpowers this advantage, since it melts the ice.

The coefficient of performance or COP of a heat pump, refrigerator or air conditioning system is a ratio of useful heating or cooling provided to work required. Higher COPs equate to lower operating costs. The COP usually exceeds 1, especially in heat pumps, because, instead of just converting work to heat, it pumps additional heat from a heat source to where the heat is required. For complete systems, COP calculations should include energy consumption of all power consuming auxiliaries. COP is highly dependent on operating conditions, especially absolute temperature and relative temperature between sink and system, and is often graphed or averaged against expected conditions.

Air conditioning thermal storage has been shown to be somewhat beneficial in society. The fuel used at night to produce electricity is a domestic resource in most countries, so less imported fuel is used. Also, studies show that this process significantly reduces the emissions associated with producing the power for air conditioners, since in the evening, inefficient "peaker" plants are replaced by low-emission base load facilities. The plants that produce this power often work more efficiently than the gas turbines that provide peaking power during the day. As well, since the load factor on the plants is higher, fewer plants are needed to service the load.

Fuel any material that stores energy that can later be extracted, in presence of a oxidizer or a catalyser, or under the effect of a tool, but which is not conserved after the reaction

A fuel is any material that can be made to react with other substances so that it releases energy as heat energy or to be used for work. The concept was originally applied solely to those materials capable of releasing chemical energy but has since also been applied to other sources of heat energy such as nuclear energy.

Gas turbine Type of internal combustion engine

A gas turbine, also called a combustion turbine, is a type of continuous combustion, internal combustion engine. There are three main components:

  1. An upstream rotating gas compressor;
  2. A downstream turbine on the same shaft;
  3. A combustion chamber or area, called a combustor, in between 1. and 2. above.

In electrical engineering the load factor is defined as the average load divided by the peak load in a specified time period. It is a measure of the utilization rate, or efficiency of electrical energy usage; a low load factor indicates that load is not putting a strain on the electric system, whereas consumers or generators with that put more of a strain on the electric distribution will have a high load factor.

A new twist on this technology uses ice as a condensing medium for the refrigerant. In this case, regular refrigerant is pumped to coils where it is used. Rather than needing a compressor to convert it back into a liquid, however, the low temperature of ice is used to chill the refrigerant back into a liquid. This type of system allows existing refrigerant-based HVAC equipment to be converted to Thermal Energy Storage systems, something that could not previously be easily done with chill water technology. In addition, unlike water-cooled chill water systems that do not experience a tremendous difference in efficiency from day to night, this new class of equipment typically displaces daytime operation of air-cooled condensing units. In areas where there is a significant difference between peak day time temperatures and off peak temperatures, this type of unit is typically more energy efficient than the equipment that it replaces. [3]

Combustion gas turbine air inlet cooling

Thermal energy storage is also used for combustion gas turbine air inlet cooling. Instead of shifting electrical demand to the night, this technique shifts generation capacity to the day. To generate ice at night, the turbine is often mechanically connected to a large chiller's compressor. During peak daytime loads, water is circulated between the ice pile and a heat exchanger in front of the turbine air intake, cooling the intake air to near freezing temperatures. Since the air is colder, the turbine can compress more air with a given amount of compressor power. Typically, both the generated electrical power and turbine efficiency rise when the inlet cooling system is activated. This system is similar to the compressed air energy storage system.[ citation needed ]

See also

Related Research Articles

Heating, ventilation, and air conditioning Technology of indoor and vehicular environmental comfort

Heating, ventilation, and air conditioning (HVAC) is the technology of indoor and vehicular environmental comfort. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation, as HVAC&R or HVACR or "ventilation" is dropped, as in HACR.

Heat pump a device that transfers thermal energy in the opposite direction of spontaneous heat transfer

A heat pump is a device that transfers heat energy from a source of heat to what is called a heat sink. Heat pumps move thermal energy in the opposite direction of spontaneous heat transfer, by absorbing heat from a cold space and releasing it to a warmer one. A heat pump uses a small amount of external power to accomplish the work of transferring energy from the heat source to the heat sink. The most common design of a heat pump involves four main components – a condenser, an expansion valve, an evaporator and a compressor. The heat transfer medium circulated through these components is called refrigerant.

Chiller machine that removes heat from a liquid via a vapor-compression or absorption refrigeration cycle

A chiller is a machine that removes heat from a liquid via a vapor-compression or absorption refrigeration cycle. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream. As a necessary by-product, refrigeration creates waste heat that must be exhausted to ambience, or for greater efficiency, recovered for heating purposes.

Refrigerator household appliance for preserving food at a low temperature

A refrigerator is an appliance that consists of a thermally insulated compartment and a heat pump that transfers heat from the inside of the fridge to its external environment so that the inside of the fridge is cooled to a temperature below the ambient temperature of the room. Refrigeration is an essential food storage technique in developed countries. The lower temperature lowers the reproduction rate of bacteria, so the refrigerator reduces the rate of spoilage. A refrigerator maintains a temperature a few degrees above the freezing point of water. Optimum temperature range for perishable food storage is 3 to 5 °C. A similar device that maintains a temperature below the freezing point of water is called a freezer. The refrigerator replaced the icebox, which had been a common household appliance for almost a century and a half.

Building automation branch of automation

Building automation is the automatic centralized control of a building's heating, ventilation and air conditioning, lighting and other systems through a building management system or building automation system (BAS). The objectives of building automation are improved occupant comfort, efficient operation of building systems, reduction in energy consumption and operating costs, and improved life cycle of utilities.

Economizers, or economisers (UK), are mechanical devices intended to reduce energy consumption, or to perform useful function such as preheating a fluid. The term economizer is used for other purposes as well. Boiler, power plant, heating, Refrigeration, ventilating, and air conditioning (HVAC) uses are discussed in this article. In simple terms, an economizer is a heat exchanger.

Vapor-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air-conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems.

Solar air conditioning refers to any air conditioning (cooling) system that uses solar power.

District cooling delivery of chilled water to buildings like offices and factories needing cooling

District cooling is the cooling equivalent of district heating. Working on broadly similar principles to district heating, district cooling delivers chilled water to buildings like offices and factories needing cooling. In winter, the source for the cooling can often be sea water, so it is a cheaper resource than using electricity to run compressors for cooling. Alternatively, District Cooling can be provided by a Heat Sharing Network which enables each building on the circuit to use a heat pump to reject heat to an ambient ground temperature circuit.

Absorption heat pump

An absorption heat pump is an air-source heat pump driven not by electricity, but by a heat source such as solar-heated water, or geothermal-heated water. Absorption refrigerators also work on the same principle, but are not reversible and cannot serve as a heat source.

An air source heat pump (ASHP) is a system which transfers heat from outside to inside a building, or vice versa. Under the principles of vapor compression refrigeration, an ASHP uses a refrigerant system involving a compressor and a condenser to absorb heat at one place and release it at another. They can be used as a space heater or cooler, and are sometimes called "reverse-cycle air conditioners".

Geothermal heat pump heating and/or cooling system that transfers heat to or from the ground

A geothermal heat pump or ground source heat pump (GSHP) is a central heating and/or cooling system that transfers heat to or from the ground.

Air conditioning Process of altering the properties of air to more favourable conditions

Air conditioning is the process of removing heat and moisture from the interior of an occupied space, to improve the comfort of occupants. Air conditioning can be used in both domestic and commercial environments. This process is most commonly used to achieve a more comfortable interior environment, typically for humans and other animals; however, air conditioning is also used to cool/dehumidify rooms filled with heat-producing electronic devices, such as computer servers, power amplifiers, and even to display and store some delicate products, such as artwork.

Slurry ice

Slurry ice is a phase changing refrigerant made up of millions of ice "micro-crystals" formed and suspended within a solution of water and a freezing point depressant. Some compounds used in the field are salt, ethylene glycol, propylene glycol, alcohols like isobutyl and ethanol, and sugars like sucrose and glucose. Slurry ice has greater heat absorption compared to single phase refrigerants like brine, because the melting enthalpy of the ice is also used.

Chilled water is a commodity often used to cool a building's air and equipment, especially in situations where many individual rooms must be controlled separately, such as a hotel. The chilled water can be supplied by a vendor, such as a public utility or created at the location of the building that will use it, which has been the norm.

Free cooling is an economical method of using low external air temperatures to assist in chilling water, which can then be used for industrial processes, or air conditioning systems. The chilled water can either be used immediately or be stored for the short- or long-term. When outdoor temperatures are lower relative to indoor temperatures, this system utilizes the cool outdoor air as a free cooling source. In this manner, the system replaces the chiller in traditional air conditioning systems while achieving the same cooling result. Such systems can be made for single buildings or district cooling networks.

HVAC is a major subdiscipline of mechanical engineering. The goal of HVAC design is to balance indoor environmental comfort with other factors such as installation cost, ease of maintenance, and energy efficiency. The discipline of HVAC includes a large number of specialized terms and acronyms, many of which are summarized in this glossary.

Pumpable ice technology

Pumpable ice (PI) technology is a technology to produce and use fluids or secondary refrigerants, also called coolants, with the viscosity of water or jelly and the cooling capacity of ice. Pumpable ice is typically a slurry of ice crystals or particles ranging from 5 to 10,000 micrometers (1 cm) in diameter and transported in brine, seawater, food liquid, or gas bubbles of air, ozone, or carbon dioxide.

Turbine inlet air cooling

Turbine inlet air cooling is a group of technologies and techniques consisting of cooling down the intake air of the gas turbine. The direct consequence of cooling the turbine inlet air is power output augmentation. It may also improve the energy efficiency of the system. This technology is widely used in hot climates with high ambient temperatures that usually coincides with on-peak demand period.

The Glossary of Geothermal Heating and Cooling provides definitions of many terms used within the Geothermal heat pump industry. The terms in this glossary may be used by industry professionals, for education materials, and by the general public.

References

  1. Kelly-Detwiler, Peter (22 May 2014). "Ice Storage: A Cost-Efficient Way To Cool Commercial Buildings While Optimizing the Power Grid". Forbes .
  2. "California utility augments 1,800 air conditioning units with "ice battery"". ARS Technica . 4 May 2017.
  3. Du Bois, Denis (16 January 2007). "Ice Energy's "Ice Bear" Keeps Off-Peak Kilowatts in Cold Storage to Reduce HVAC's Peak Power Costs". Energy Priorities.