Trombe wall

Last updated

A Trombe wall is a massive equator-facing wall that is painted a dark color in order to absorb thermal energy from incident sunlight and covered with a glass on the outside with an insulating air-gap between the wall and the glaze. A Trombe wall is a passive solar building design strategy that adopts the concept of indirect-gain, where sunlight first strikes a solar energy collection surface which covers thermal mass located between the Sun and the space. The sunlight absorbed by the mass is converted to thermal energy (heat) and then transferred into the living space.

Contents

Trombe walls are also named mass walls, [1] solar wall, [2] or thermal storage wall. [3] However, due to the extensive work of professor Félix Trombe and architect Jacques Michel in the design of passively heated and cooled solar structure, they are often called Trombe Walls. [2]

This system is similar to the air heater (as a simple glazed box on the south wall with a dark absorber, air space, and two sets of vents at top and bottom) created by professor Edward S. Morse a hundred years ago. [4] [5] [6]

History of Passive Solar Systems and Evolution of Trombe Walls

In 1920s, the idea of solar heating started in Europe. In Germany, housing projects were designed to take advantage of the sun. The research and accumulated experience with solar design then spread across the Atlantic by architects like Walter Gropius and Marcel Breuer. Besides from these early examples, the heating of homes with the sun made slow progress until the 1930s, when several different American architects started to explore the potential of solar heating. The pioneering work of these American architects, the influence of the immigrant Europeans, and the memory of the wartime fuel shortages made solar heating very popular during the initial housing boom at the end of World War II. [7]

Later in 1970s, before and after the international oil crisis of 1973, some European architectural periodicals were critical of standard construction methods and the architecture of the time. They described how architects and engineers reacted to the crisis, proposing new techniques and projects in order to intervene innovatively in the built environment, using energy and natural resources more efficiently. [8] Moreover, the depletion of natural sources generated interest in renewable energy sources, such as the sun. [9] Also, parallel to the global population growth, energy consumption and environmental issues become a global concern especially while the building sector is consuming the highest energy in the world and most of the energy is used for heating, ventilation and air condition systems. [10] For these reasons, the buildings today are expected to achieve both energy efficient and environmental-friendly design by using renewable energy partly or completely instead of fossil energy for heating and cooling and solar energy that utilize solar radiation from the sun. In this direction, the integration of passive solar systems in buildings is one strategy for sustainable development and increasingly encouraged by international regulations. [11]

Today's low-energy buildings with Trombe walls often improve on the ancient technique that incorporates a thermal storage and delivery system people have used: thick walls of adobe or stone to trap the sun's heat during the day and release it slowly and evenly at night to heat their building. [12] Today, the Trombe wall continues to serve as an effective strategy of passive solar design. The well-known example of the Trombe wall system is first used in the Trombe house in Odeillo, France in 1967. [13] [3] The black painted wall is constructed of approximately 2 feet thick concrete with an air space and a double glazing on its exterior side. The house is primarily heated by radiation and convection from the inner surface of the concrete wall and the results from studies show that 70% of this building’s yearly heating needs are supplied by solar energy. Therefore, the efficiency of the system is comparable to a good active solar heating system.

Then another passive collector-distributor Trombe Wall system is built in 1970, in Montmedy, France. The house with 280 m³ living space required 7000 kWh for space heating annually. At Montmedy-between 49° and 50° North latitude-5400 kWh were supplied by solar heating and the remainder from an auxiliary electrical system. The annual heating cost for electricity was approximately $225 when compared to an estimated $750 for a home entirely heated by electricity in the same area. This yields to a 77% reduction in heating load and a 70% reduction in the cost for winter heating requirement. [14]

In 1974, the first example of Trombe wall system is used in the Kelbaugh House in Princeton, New Jersey. [4] The house is located along the northern boundary of the site to maximize the unshaded access to available sunlight. The two-story building has 600 ft² of thermal storage wall which is constructed of concrete and painted with a selective black paint over a masonry sealer. Although the main heating is accomplished by radiation and convection from the inner face of the wall, two vents in the wall also allow daytime heating by the natural convection loop. According to data collected in the winters of 1975-1976 and 1976-1977, the Trombe wall system reduced the heating costs respectively by 76% and 84%. [3]

The Trombe wall collects heat during the day. Day time.jpg
The Trombe wall collects heat during the day.
Due to wall's time lag caused by the wall material's heat capacity, most of the heat is released at night. Trombe Wall-Night time.jpg
Due to wall’s time lag caused by the wall material's heat capacity, most of the heat is released at night.

How Trombe Walls Work

Unlike an active solar system that employs hardware and mechanical equipment to collect or transport heat, Trombe wall is a passive solar-heating system where the thermal energy flows in the system by natural means such as radiation, conduction, and natural convection. As a consequence, the wall works by absorbing sunlight on its outer face and then transferring this heat through the wall by conduction. Heat conducted through the wall is then distributed to the living space by radiation, and to some degree by convection, from the wall’s inner surface. [3]

The greenhouse effect helps this system by trapping the solar radiation between the glazing and the thermal mass. Heat from the sun, in the form of shorter-wavelength radiation, passes through the glazing largely unimpeded. When this radiation strikes the dark colored surface of the thermal mass facing the sun, the energy is absorbed and then re-emitted in the form of longer-wavelength radiation that cannot pass through the glazing as readily. Hence heat becomes trapped and builds up in the air space between the high heat capacity thermal mass and the glazing that faces the sun. [15]

Another phenomenon that plays role in the Trombe wall’s operation is the time lag caused by the heat capacity of the materials. Since Trombe walls are quite thick and made of high heat capacity materials, the heat-flow from the warmer outer surface to inner surface is slower than other materials with less heat capacity. This delayed heat-flow phenomenon is known as time lag and it causes the heat gained during the day to reach the interior surface of the thermal mass later. This property of the mass helps to heat the living space at the evenings as well. [7] So, if there is enough mass, the wall can act as a radiant heater all night long. On the other hand, if the mass is too thick, it takes too long to transmit the thermal energy it collects, thus, the living space does not receive enough heat during the evening hours when it is needed the most. Likewise, if the thermal mass is too thin, it transmits the heat fast, resulting in overheating of the living space during the day and little energy left for the evening. Also, the Trombe walls using water as a thermal mass collect and distribute heat to a space in the same way, but they transfer the heat through the wall components (tubes, bottles, barrels, drums, etc.) by convection rather than by conduction and the convection performance of the water walls differs according to their different heat capacities. [1] Larger storage volumes provide a greater and long-term heat storage capacity, while smaller contained volumes provide greater heat exchange surfaces and thus faster distribution.

Trombe Wall Design and Construction

Trombe walls are often designed to serve as a load-bearing function as well as to collect and store the sun’s energy and to help enclose the building’s interior spaces. [2] The requirements of a Trombe Wall are glazing areas faced toward the equator for maximum winter solar gain and a thermal mass, located 4 inches or more directly behind the glass, which serves for heat storage and distribution. Also, there are many factors, such as color, thickness, or additional thermal control devices that have an impact on the design and the effectiveness of Trombe Walls. [3] Equatorial, which is Southward in the Northern Hemisphere and Northward in the Southern Hemisphere, is the best rotation for passive solar strategies because they collect much more sun during the day than they lose during the night, and collect much more sun in the winter than in the summer. [7]

A water wall with 55-Gallon Water Filled Drums, Corrales, New Mexico, US. INTERIOR DETAIL OF 55-GALLON WATER FILED DRUMS THAT FORM THE CORE OF THE PASSIVE SOLAR HEATING SYSTEM OF THIS HOME... - NARA - 555315.jpg
A water wall with 55-Gallon Water Filled Drums, Corrales, New Mexico, US.

The first design strategy to increase the effectiveness of Trombe Walls is painting the outside surface of the wall to black (or a dark color) for the best possible absorption of sunlight. Moreover, a selective coating to a Trombe wall improves its performance by reducing the amount of infrared energy radiated back through the glass. The selective surface consists of a sheet of metal foil glued to the outside surface of the wall and it absorbs almost all the radiation in the visible portion of the solar spectrum and emits very little in the infrared range. High absorbency turns the sunlight into heat at the wall's surface, and low emittance prevents the heat from radiating back towards the glass. [16]

Although the Trombe walls are usually made of solid materials, such as concrete, brick, stone, or adobe, they can also be made of water. The advantage of using water as a thermal mass is that water stores considerably more heat per volume (has a greater heat capacity) than masonry. [2] The developer of this water wall, Steve Bare, names this system “Drum Wall”. [14] He painted the steel containers similar to oil drums and filled them almost full of water, leaving some room for the thermal expansion. Then stacked the containers horizontally behind an equator-facing double glazing with the blackened bottoms facing outside. This water wall involves the same principles as the Trombe walls but employs a different storage material and different methods of containing that material. [1] Like the dark colored thermal mass of the Trombe walls, the containers that store the water are also frequently painted with dark colors to increase their absorptivity, but it is also common to leave them transparent or translucent to allow some daylight to pass through.

Another critical part of Trombe wall design is choosing the proper thermal mass material and thickness. The optimum thickness of the thermal mass is dependent on the heat capacity and the thermal conductivity of the material used. There are some rules to follow while sizing the thermal mass. [3]

Effect of Wall the Thermal Mass Thickness on Living Space Air Temperature Fluctuations. Mazria, E. Effect of Wall Thickness to Fluctuation.jpg
Effect of Wall the Thermal Mass Thickness on Living Space Air Temperature Fluctuations. Mazria, E.
A half-height wall allows controlled direct gain for daytime heating and daylighting while also storing heat for the night. Half Trombe Wall.jpg
A half-height wall allows controlled direct gain for daytime heating and daylighting while also storing heat for the night.

- The optimum thickness of a masonry wall increases as the thermal conductivity of the wall material increases. For instance, to compensate a rapid heat transfer through a highly conductive material, the wall needs to be thicker.

Accordingly, since the thicker wall absorbs and stores more heat to use at night, the efficiency of the wall increases as the conductivity and thickness of the wall increase.

There is an optimum thickness range for the masonry materials.

The efficiency of the water wall increases as the thickness of the wall increases. However, it is hard to notice a considerable performance increase as the walls get thicker than 6 inches. Likely, a water wall thinner than 6 inches is also not enough to act as a proper thermal mass that stores the heat during the day.

In the early Trombe wall design, there are vents on the walls to distribute the heat by natural convection (thermocirculation) from the exterior face of the wall, but only during the daytime and early evening. [3] Solar radiation passing through the glass is absorbed by the wall heating its surface to temperature as high as 150 °F. This heat is transferred to the air in the air space between the wall and the glass. Through openings or vents located at the top of the wall, warm air rising in the air space enters the room while simultaneously drawing cool room air through the low vents in the wall. In this way additional heat can be supplied to the living space during periods of sunny weather. However, it is now clear that the vents do not work well in either summer or winter. [7] It becomes more common to design a half Trombe Wall then combine it with a direct gain system. The direct gain part delivers heat early in the day while the Trombe wall stores heat for the nighttime use. Moreover, unlike a full Trombe wall, the direct gain part allows views and the delight of winter sunshine.

A building using Trombe wall as a passive solar strategy in Hopfgarten, Austria. 19880412080NR Hopfgarten (Thuringen) Solarhaus am Weinberg.jpg
A building using Trombe wall as a passive solar strategy in Hopfgarten, Austria.
A school with Trombe wall in Salta, Argentina. Pared de muro trombe.jpg
A school with Trombe wall in Salta, Argentina.

To minimize the possible drawbacks of the Trombe wall system, there are additional thermal control strategies to employ to the wall design. For instance, the minimum 4-inch distance between the glass and the mass allows cleaning the glazing and the insertion of a roll-down radiant barrier as needed. [7] Adding a radiant barrier or night insulation between the glazing and the thermal mass reduces nighttime heat losses and summer daytime heat gains. However, to prevent overheating in summers, combining this strategy with an outdoor shading device like shutter, a roof overhang, or an interior shading to block excessive solar radiation from heating the Trombe wall would be the best. [17] Another strategy helps to benefit from the solar collection without some of the drawbacks of the Trombe walls is to use exterior mirror-like reflectors. [7] The additional reflected area helps Trombe walls to benefit more from the sunlight with the flexibility of removing or rotating the reflector device if the solar collection is undesired.

When three different Trombe wall facades with single glass, double glass, and an integrated semi-transparent PV module are compared in hot and humid climate, the single glass provides the highest solar radiation gain due to its higher solar heat gain efficiency. [18] However, it is recommended to use the single glass with a shutter for the evening and night times, to offset its heat losses. High transmission glazing maximizes solar gains of the Trombe wall while allowing to recognize the dark brick, natural stones, water containers, or another attractive thermal mass system behind the glazing as well. However, from an aesthetics perspective, sometimes it is not desirable to distinguish the black thermal mass. As an architectural detail, patterned glass can be used to limit the exterior visibility of the dark wall without sacrificing transmissivity. [16]

Advantages and Disadvantages of the Trombe Wall Systems

Advantages

Disadvantages

Mitigating Design Variations

The Kachadorian floor overcomes the disadvantages of the Trombe wall by orienting it horizontally instead of vertically. The Barra system combines actual Trombe walls with a ventilated slab like the Kachadorian floor.

See also

Related Research Articles

Passive solar building design Architectural engineering that uses the Suns heat without electric or mechanical systems

In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy, in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unlike active solar heating systems, it does not involve the use of mechanical and electrical devices.

Thermal mass Use of thermal energy storage in building design

In building design, thermal mass is a property of the mass of a building which enables it to store heat, providing "inertia" against temperature fluctuations. It is sometimes known as the thermal flywheel effect. For example, when outside temperatures are fluctuating throughout the day, a large thermal mass within the insulated portion of a house can serve to "flatten out" the daily temperature fluctuations, since the thermal mass will absorb thermal energy when the surroundings are higher in temperature than the mass, and give thermal energy back when the surroundings are cooler, without reaching thermal equilibrium. This is distinct from a material's insulative value, which reduces a building's thermal conductivity, allowing it to be heated or cooled relatively separately from the outside, or even just retain the occupants' thermal energy longer.

Radiative cooling

Radiative cooling is the process by which a body loses heat by thermal radiation. As Planck's law describes, every physical body spontaneously and continuously emits electromagnetic radiation.

Solar thermal energy Technology using sunlight for heat

Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in industry, and in the residential and commercial sectors.

A solar chimney – often referred to as a thermal chimney – is a way of improving the natural ventilation of buildings by using convection of air heated by passive solar energy. A simple description of a solar chimney is that of a vertical shaft utilizing solar energy to enhance the natural stack ventilation through a building.

Solar thermal collector Device that collects heat

A solar thermal collector collects heat by absorbing sunlight. The term "solar collector" commonly refers to a device for solar hot water heating, but may refer to large power generating installations such as solar parabolic troughs and solar towers or non water heating devices such as solar air heaters.

Passive cooling Building design that reduces inside temperatures without air conditioning

Passive cooling is a building design approach that focuses on heat gain control and heat dissipation in a building in order to improve the indoor thermal comfort with low or no energy consumption. This approach works either by preventing heat from entering the interior or by removing heat from the building.

The Barra system is a passive solar building technology developed by Horazio Barra in Italy. It uses a collector wall to capture solar radiation in the form of heat. It also uses the thermosiphon effect to distribute the warmed air through channels incorporated into the reinforced concrete floors, warming the floors and hence the building. Alternatively, in hot weather, cool nighttime air can be drawn through the floors to chill them in a form of air conditioning.

Building insulation Methods of minimizing heat transfer in constructions

Building insulation is any object in a building used as insulation for thermal management. While the majority of insulation in buildings is for thermal purposes, the term also applies to acoustic insulation, fire insulation, and impact insulation. Often an insulation material will be chosen for its ability to perform several of these functions at once.

Solar gain

Solar gain is the increase in thermal energy of a space, object or structure as it absorbs incident solar radiation. The amount of solar gain a space experiences is a function of the total incident solar irradiance and of the ability of any intervening material to transmit or resist the radiation.

A double envelope house is a passive solar house design which collects solar energy in a solarium and passively allows the warm air to circulate around the house between two sets of walls, a double building envelope. This design is from 1975 by Lee Porter Butler in the United States.

Solar architecture

Solar architecture is an architectural approach that takes in account the Sun to harness clean and renewable solar power. It is related to the fields of optics, thermics, electronics and materials science. Both active and passive solar housing skills are involved in solar architecture.

Solar air heat Solar thermal technology

Solar air heating is a solar thermal technology in which the energy from the sun, insolation, is captured by an absorbing medium and used to heat air. Solar air heating is a renewable energy heating technology used to heat or condition air for buildings or process heat applications. It is typically the most cost-effective out of all the solar technologies, especially in commercial and industrial applications, and it addresses the largest usage of building energy in heating climates, which is space heating and industrial process heating.

Ecohouse Home built to have low environmental impact

An Eco-house (or Eco-home) is an environmentally low-impact home designed and built using materials and technology that reduces its carbon footprint and lowers its energy needs. Eco-homes are measured in multiple ways meeting sustainability needs such as water conservation, reducing wastes through reusing and recycling materials, controlling pollution to limit global warming, energy generation and conservation, and decreasing CO2 emissions.

Insulated glazing Construction element consisting of at least two glass plates

Insulating glass (IG) consists of two or more glass window panes separated by a space to reduce heat transfer across a part of the building envelope. A window with insulating glass is commonly known as double glazing or a double-paned window, triple glazing or a triple-paned window, or quadruple glazing or a quadruple-paned window, depending upon how many panes of glass are used in its construction.

Skylight Window in the ceiling-roof

A skylight is a light-permitting structure or window, usually made of transparent or translucent glass, that forms all or part of the roof space of a building for daylighting and ventilation purposes.

Solar energy – radiant light and heat from the sun. It has been harnessed by humans since ancient times using a range of ever-evolving technologies. Solar energy technologies include solar heating, solar photovoltaics, solar thermal electricity and solar architecture, which can make considerable contributions to solving some of the most urgent problems that the world now faces.

Radiant heating and cooling Category of HVAC technologies

Radiant heating and cooling is a category of HVAC technologies that exchange heat by both convection and radiation with the environments they are designed to heat or cool. There are many subcategories of radiant heating and cooling, including: "radiant ceiling panels", "embedded surface systems", "thermally active building systems", and infrared heaters. According to some definitions, a technology is only included in this category if radiation comprises more than 50% of its heat exchange with the environment; therefore technologies such as radiators and chilled beams are usually not considered radiant heating or cooling. Within this category, it is practical to distinguish between high temperature radiant heating, and radiant heating or cooling with more moderate source temperatures. This article mainly addresses radiant heating and cooling with moderate source temperatures, used to heat or cool indoor environments. Moderate temperature radiant heating and cooling is usually composed of relatively large surfaces that are internally heated or cooled using hydronic or electrical sources. For high temperature indoor or outdoor radiant heating, see: Infrared heater. For snow melt applications see: Snowmelt system.

Passive survivability refers to a building's ability to maintain critical life-support conditions in the event of extended loss of power, heating fuel, or water. This idea proposes that designers should incorporate ways for a building to continue sheltering inhabitants for an extended period of time during and after a disaster situation, whether it be a storm that causes a power outage, a drought which limits water supply, or any other possible event.

Quadruple glazing

]

References

  1. 1 2 3 4 5 6 Myers, John D. (1984). Solar Applications in Industry and Commerce. Englewood Cliffs, NJ: Prentice-Hall. pp. 70–78. ISBN   0-13-822404-8.
  2. 1 2 3 4 5 Meltzer, Michael (1985). Passive and Active Solar Heating Technology. Englewood Cliffs, NJ: Prentice-Hall. pp. 115–138. ISBN   0-13-653114-8.
  3. 1 2 3 4 5 6 7 Mazria, Edward (1979). The Passive Solar Energy Book. Emmaus, PA: Rodale Press. pp. 28–62, 152–179. ISBN   0-87857-260-0.
  4. 1 2 McVeigh, J. C. (1983). Sun Power: An Introduction to the Applications of Solar Energy (2nd ed.). Oxford, UK: Pergamon Press. pp. 117–122. ISBN   0-08-026148-5.
  5. Old Solar: 1881
  6. Lloyd, Alter. "The Trombe Wall: Low Tech Solar Design Makes A Comeback".
  7. 1 2 3 4 5 6 7 Lechner, Norbert (2008-11-24). Heating, Cooling, Lighting: Sustainable Design Methods for Architects (3rd ed.). WILEY. pp. 147–176. ISBN   978-0-470-04809-2.
  8. Medici, Piero. "The Trombe Wall during the 1970s: technological device or architectural space? Critical inquiry on the Trombe Wall in Europe and the role of architectural magazines". SPOOL. 4 (2). doi:10.7480/spool.2018.1.1938 . Retrieved 24 November 2019.
  9. Karakosta, Charikleia; Doukas, Haris; Psarras, John (May 2010). "EU–MENA energy technology transfer under the CDM: Israel as a frontrunner?". Energy Policy. 38 (5): 2455–2462. doi:10.1016/j.enpol.2009.12.039.
  10. Chan, Hoy-Yen; Riffat, Saffa B.; Zhu, Jie (February 2010). "Review of passive solar heating and cooling technologies". Renewable and Sustainable Energy Reviews. 14 (2): 781–789. doi:10.1016/j.rser.2009.10.030.
  11. 1 2 Hu, Zhongting; He, Wei; Ji, Jie; Zhang, Shengyao (April 2017). "A review on the application of Trombe wall system in buildings". Renewable and Sustainable Energy Reviews. 70: 976–987. doi:10.1016/j.rser.2016.12.003.
  12. "Building a Better Trombe Wall" (PDF).
  13. Denzer, Anthony (2013). The Solar House: Pioneering Sustainable Design. Rizzoli. ISBN   978-0847840052. Archived from the original on 2013-07-26.
  14. 1 2 3 Michels, Tim (1979). Solar Energy Utilization. New York City, NY: Van Nostrand Reinhold Company. pp. 43–52. ISBN   0-442-25368-0.
  15. Reardon, Chris; Mosher, Max; Clarke, Dick. "Passive Solar Heating" (PDF). Archived from the original (PDF) on 2013-05-02.
  16. 1 2 Torcellini, Paul; Pless, Shanty. "Trombe Walls in Low-Energy Buildings: Practical Experiences" (PDF).
  17. Feist, Wolfgang. "First Steps: What Can be a Passive House in Your Region with Your Climate?" (PDF).
  18. Kundakci Koyunbaba, Basak; Yilmaz, Zerrin (September 2012). "The comparison of Trombe wall systems with single glass, double glass and PV panels". Renewable Energy. 45: 111–118. doi:10.1016/j.renene.2012.02.026.
  19. Liu, Yiwei; Feng, Wei (24 October 2011). "Integrating Passive Cooling and Solar Techniques into the Existing Building in South China". Advanced Materials Research. 368–373: 3717–3720. doi:10.4028/www.scientific.net/AMR.368-373.3717.
  20. Hordeski, Michael F (2004). Dictionary of Energy Efficiency Technologies. West Virginia, US: Fairmont Press. ISBN   978-0824748104.
  21. 1 2 Briga-Sá, Ana; Martins, Analisa; Boaventura-Cunha, José; Lanzinha, João Carlos; Paiva, Anabela (May 2014). "Energy performance of Trombe walls: Adaptation of ISO 13790:2008(E) to the Portuguese reality". Energy and Buildings. 74: 111–119. doi:10.1016/j.enbuild.2014.01.040.
  22. Zhang, Hongliang; Shu, Haiwen (November 2019). "A Comprehensive Evaluation on Energy, Economic and Environmental Performance of the Trombe Wall during the Heating Season". Journal of Thermal Science. 28 (6): 1141–1149. doi:10.1007/s11630-019-1176-7.
  23. Dabaieh, Marwa; Maguid, Dalya; El-Mahdy, Deena; Wanas, Omar (November 2019). "An urban living lab monitoring and post occupancy evaluation for a Trombe wall proof of concept". Solar Energy. 193 (15): 556–567. doi:10.1016/j.solener.2019.09.088.