IEC 62682

Last updated

IEC 62682 is a technical standard titled Management of alarms systems for the process industries.

Contents

Scope

The standard specifies principles and processes for the management of alarm systems based on distribute control systems and computer-based Human-Machine Interface (HMI) technology for the process industries. It covers alarms from all systems presented to the operator, which can include basic process control systems, annunciator panels, safety instrumented systems, fire and gas systems, and emergency response systems. The practices are applicable to continuous, batch, and discrete processes. The process industry sector includes many types of manufacturing processes, such as refineries, petrochemical, chemical, pharmaceutical, pulp and paper, and power.

The Standard

The standard addresses all lifecycle phases (development, design, installation, and operation) for alarm management in the process industries. The standard defines the terminology and work processes recommended to effectively maintain an alarm system throughout the lifecycle. The standard was written as an extension of the existing ISA 18.2-2009 standard which utilized numerous industry alarm management guidance documents in its development such as EEMUA 191. Ineffective alarm systems have often been cited as contributing factors in the investigation reports following major process incidents. The standard is intended to provide a methodology that will result in the improved safety of the process industries.

Alarm management is the application of human factors along with instrumentation engineering and systems thinking to manage the design of an alarm system to increase its usability. Most often the major usability problem is that there are too many alarms annunciated in a plant upset, commonly referred to as alarm flood, since it is so similar to a flood caused by excessive rainfall input with a basically fixed drainage output capacity. However, there can also be other problems with an alarm system such as poorly designed alarms, improperly set alarm points, ineffective annunciation, unclear alarm messages, etc. Poor alarm management is one of the leading causes of unplanned downtime, contributing to over $20B in lost production every year, and of major industrial incidents such as the one in Texas City. Developing good alarm management practices is not a discrete activity, but more of a continuous process. ==

Related Research Articles

Systems engineering interdisciplinary field of engineering and engineering management that focuses on how to design and manage complex systems over their life cycles

Systems engineering is an interdisciplinary field of engineering and engineering management that focuses on how to design and manage complex systems over their life cycles. At its core, systems engineering utilizes systems thinking principles to organize this body of knowledge. The individual outcome of such efforts, an engineered system, can be defined as a combination of components that work in synergy to collectively perform a useful function.

A management system is a set of policies, processes and procedures used by an organization to ensure that it can fulfill the tasks required to achieve its objectives. These objectives cover many aspects of the organization's operations. For instance, an environmental management system enables organizations to improve their environmental performance and an occupational health and safety management system (OHSMS) enables an organization to control its occupational health and safety risks, etc.

ISO/IEC/IEEE 12207 Systems and software engineering – Software life cycle processes is an international standard for software lifecycle processes. First introduced in 1995, it aims to be a primary standard that defines all the processes required for developing and maintaining software systems, including the outcomes and/or activities of each process.

ISO/IEC 15504 Information technology – Process assessment, also termed Software Process Improvement and Capability Determination (SPICE), is a set of technical standards documents for the computer software development process and related business management functions. It is one of the joint International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) standards, which was developed by the ISO and IEC joint subcommittee, ISO/IEC JTC 1/SC 7.

Fieldbus Foundation was an organization dedicated to a single international, interoperable fieldbus standard. It was established in September 1994 by a merger of WorldFIP North America and the Interoperable Systems Project (ISP). Fieldbus Foundation was a not-for-profit trade consortium that consisted of more than 350 of the world's suppliers and end users of process control and manufacturing automation products. Working together those companies made contributions to the IEC/ISA/FDI and other fieldbus standards development.

Safety integrity level (SIL) is defined as a relative level of risk-reduction provided by a safety function, or to specify a target level of risk reduction. In simple terms, SIL is a measurement of performance required for a safety instrumented function (SIF).

Profinet is an industry technical standard for data communication over Industrial Ethernet, designed for collecting data from, and controlling equipment in industrial systems, with a particular strength in delivering data under tight time constraints. The standard is maintained and supported by Profibus & Profinet International, an umbrella organization headquartered in Karlsruhe, Germany.

Cybersecurity standards are techniques generally set forth in published materials that attempt to protect the cyber environment of a user or organization. This environment includes users themselves, networks, devices, all software, processes, information in storage or transit, applications, services, and systems that can be connected directly or indirectly to networks. The principal objective is to reduce the risks, including prevention or mitigation of cyber-attacks. These published materials consist of collections of tools, policies, security concepts, security safeguards, guidelines, risk management approaches, actions, training, best practices, assurance and technologies.

IEC 61508 is an international standard published by the International Electrotechnical Commission consisting of methods on how to apply, design, deploy and maintain automatic protection systems called safety-related systems. It is titled Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems.

IEC standard 61511 is a technical standard which sets out practices in the engineering of systems that ensure the safety of an industrial process through the use of instrumentation. Such systems are referred to as Safety Instrumented Systems. The title of the standard is "Functional safety - Safety instrumented systems for the process industry sector".

The ISO/IEC 15288 is a systems engineering standard covering processes and lifecycle stages. Initial planning for the ISO/IEC 15288:2002(E) standard started in 1994 when the need for a common systems engineering process framework was recognized. The previously accepted standard MIL STD 499A (1974) was cancelled after a memo from SECDEF prohibited the use of most United States Military Standards without a waiver. The first edition was issued on 1 November 2002. Stuart Arnold was the editor and Harold Lawson was the architect of the standard. In 2004 this standard was adopted as IEEE 15288. ISO/IEC 15288 has been updated 1 February 2008 as well as on 15 May 2015.

ISO/IEC 21827 is an International Standard based on the Systems Security Engineering Capability Maturity Model (SSE-CMM) developed by the International Systems Security Engineering Association (ISSEA). ISO/IEC 21827 specifies the Systems Security Engineering - Capability Maturity Model, which describes the characteristics essential to the success of an organization's security engineering process, and is applicable to all security engineering organizations including government, commercial, and academic. ISO/IEC 21827 does not prescribe a particular process or sequence, but captures practices generally observed in industry. The model is a standard metric for security engineering practices covering the following:

Functional safety is the part of the overall safety of a system or piece of equipment that depends on automatic protection operating correctly in response to its inputs or failure in a predictable manner (fail-safe). The automatic protection system should be designed to properly handle likely human errors, hardware failures and operational/environmental stress.

ISO 26262, titled "Road vehicles – Functional safety", is an international standard for functional safety of electrical and/or electronic systems in production automobiles defined by the International Organization for Standardization (ISO) in 2011.

The international standard IEC 62304 – medical device software – software life cycle processes is a standard which specifies life cycle requirements for the development of medical software and software within medical devices. It is harmonized by the European Union (EU) and the United States (US), and therefore can be used as a benchmark to comply with regulatory requirements from both these markets.

Control system security is the prevention of interference with the proper operation of industrial automation and control systems. These control systems manage essential services including electricity, petroleum production, water, transportation, manufacturing, and communications. They rely on computers, networks, operating systems, applications, and programmable controllers, each of which could contain security vulnerabilities. The 2010 discovery of the Stuxnet worm demonstrated the vulnerability of these systems to cyber incidents. The United States and other governments have passed cyber-security regulations requiring enhanced protection for control systems operating critical infrastructure.

ISO/IEC 29110: Systems and Software Life Cycle Profiles and Guidelines for Very Small Entities (VSEs) International Standards (IS) and Technical Reports (TR) are targeted at Very Small Entities (VSEs). A Very Small Entity (VSE) is an enterprise, an organization, a department or a project having up to 25 people. The ISO/IEC 29110 is a series of international standards and guides entitled "Systems and Software Engineering — Lifecycle Profiles for Very Small Entities (VSEs)". The standards and technical reports were developed by working group 24 (WG24) of sub-committee 7 (SC7) of Joint Technical Committee 1 (JTC1) of the International Organization for Standardization and the International Electrotechnical Commission.

ISO/IEC/IEEE 29119 Software and systems engineering -- Software testing is a series of five international standards for software testing. First developed in 2007 and released in 2013, the standard "defines vocabulary, processes, documentation, techniques, and a process assessment model for testing that be used within any software development lifecycle."

IEC 84.00.07 is a technical report developed by the ISA 84 standards panel. It defines the lifecycle and technical requirements for ensuring effective design of fire and gas detection systems for use in the process industries. The technical report provides a lifecycle for performance based design of fire and gas detection systems, listing out the steps involved in a performance based design and establishing requirements to be implemented for each step. The technical report also defines performance metrics for application to fire and gas detection systems. The performance metrics established in this report for fire and gas system effectiveness include coverage and safety availability.