Comparative Tracking Index

Last updated

The Comparative Tracking Index (CTI) is used to measure the electrical breakdown (tracking) properties of an insulating material. Tracking is an electrical breakdown on the surface of an insulating material wherein an initial exposure to electrical arcing heat carbonizes the material. The carbonized areas are more conductive than the pristine insulator, increasing current flow, resulting in increased heat generation, and eventually the insulation becomes completely conductive.

Contents

Details

A large voltage difference gradually creates a conductive leakage path across the surface of the material by forming a carbonized track. Testing method is specified in IEC standard 60112 and ASTM D3638.

To measure the tracking, 50 drops of 0.1% ammonium chloride solution are dropped on the material, and the voltage measured for a 3 mm thickness is considered representative of the material performance. Also term PTI (Proof Tracking Index) is used: it means voltage at which during testing on five samples the samples pass the test with no failures.

Performance Level Categories (PLC) were introduced to avoid excessive implied precision and bias.

The CTI value is used for electrical safety assessment of electrical apparatus, as for instance carried out by testing and certification laboratories. The minimum required creepage distances over an insulating material between electrically conducting parts in apparatus, especially between parts with a high voltage and parts that can be touched by human users, is dependent on the insulator's CTI value. Also for internal distances in an apparatus by maintaining CTI based distances, the risk of fire is reduced.

Creepage distance requirement depends on the CTI. Material which CTI is unknown are classified in IIIb group. There are no CTI requirement for glass, ceramic, and other inorganic material which do not breakdown on the surface.[ citation needed ]

The better the insulation, the higher the CTI (positive relationship). In terms of clearance, a higher CTI value means a lower minimum creepage distance required, and the closer two conductive parts can be. [1]

Tracking Index (V)PLC
600 and Greater0
400 through 5991
250 through 3992
175 through 2493
100 through 1744
< 1005

In design of medical products, the CTI is treated differently. Material groups are classified as shown below, per IEC 60601-1:2005, International Standard published by the International Electrotechnical Commission (IEC):

Comparative Tracking Index (CTI)Material Group
600 ≤ CTII
400 ≤ CTI < 600II
175 ≤ CTI < 400IIIa
100 ≤ CTI < 175IIIb

The test method does not work well for voltages below 125VAC as the solution does not evaporate between successive drops. The test method has an upper limit of 600VAC; higher voltages result in air breakdown between the electrodes and not along the surface of the specimen under test. Other test methods should be sought if the objective is to differentiate specimens with CTI values above 600VAC.

Related Research Articles

Insulator (electricity) Material that does not conduct an electric current

An electrical insulator is a material in which electric current does not flow freely. The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and conductors—conduct electric current more easily. The property that distinguishes an insulator is its resistivity; insulators have higher resistivity than semiconductors or conductors. The most common examples are non-metals.

In physics, the term dielectric strength has the following meanings:

In electrical engineering, partial discharge (PD) is a localized dielectric breakdown (DB) of a small portion of a solid or fluid electrical insulation (EI) system under high voltage (HV) stress. While a corona discharge (CD) is usually revealed by a relatively steady glow or brush discharge (BD) in air, partial discharges within solid insulation system are not visible.

Lichtenberg figure Branching shapes

A Lichtenberg figure, or Lichtenberg dust figure, is a branching electric discharge that sometimes appears on the surface or in the interior of insulating materials. Lichtenberg figures are often associated with the progressive deterioration of high voltage components and equipment. The study of planar Lichtenberg figures along insulating surfaces and 3D electrical trees within insulating materials often provides engineers with valuable insights for improving the long-term reliability of high-voltage equipment. Lichtenberg figures are now known to occur on or within solids, liquids, and gases during electrical breakdown.

Electrical breakdown

Electrical breakdown or dielectric breakdown is a process that occurs when an electrical insulating material, subjected to a high enough voltage, suddenly becomes an electrical conductor and electric current flows through it. All insulating materials undergo breakdown when the electric field caused by an applied voltage exceeds the material's dielectric strength. The voltage at which a given insulating object becomes conductive is called its breakdown voltage and in addition to its dielectric strength depends on its size and shape, and the location on the object at which the voltage is applied. Under sufficient electrical potential, electrical breakdown can occur within solids, liquids, gases or vacuum. However, the specific breakdown mechanisms are different for each kind of dielectric medium.

Electrical wiring Electrical installation of cabling

Electrical wiring is an electrical installation of cabling and associated devices such as switches, distribution boards, sockets, and light fittings in a structure.

High voltage Electrical potential which is large enough to cause damage or injury

High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, high voltage refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant special safety requirements and procedures.

Breakdown voltage

The breakdown voltage of an insulator is the minimum voltage that causes a portion of an insulator to experience electrical breakdown and become electrically conductive.

Overhead power line Structure used in electric power transmission and distribution

An overhead power line is a structure used in electric power transmission and distribution to transmit electrical energy across large distances. It consists of one or more uninsulated electrical cables suspended by towers or poles.

Bushing (electrical)

In electric power, a bushing is a hollow electrical insulator that allows an electrical conductor to pass safely through a conducting barrier such as the case of a transformer or circuit breaker without making electrical contact with it. Bushings are typically made from porcelain; though other insulating materials are also used.

Electrical treeing

In electrical engineering, treeing is an electrical pre-breakdown phenomenon in solid insulation. It is a damaging process due to partial discharges and progresses through the stressed dielectric insulation, in a path resembling the branches of a tree. Treeing of solid high-voltage cable insulation is a common breakdown mechanism and source of electrical faults in underground power cables.

Pothead High-voltage electrical connection device

A pothead is a type of insulated electrical terminal used for transitioning between overhead line and underground high-voltage cable or for connecting overhead wiring to equipment like transformers. Its name comes from the process of potting or encapsulation of the conductors inside the terminal's insulating bushing.

Lightning rod Metal rod intended to protect the structure from a lightning strike

A lightning rod or lightning conductor (UK) is a metal rod mounted on a structure and intended to protect the structure from a lightning strike. If lightning hits the structure, it will preferentially strike the rod and be conducted to ground through a wire, instead of passing through the structure, where it could start a fire or cause electrocution. Lightning rods are also called finials, air terminals, or strike termination devices.

Network isolators are installed as part of a wired Ethernet system as galvanic isolators to reduce the potential for electrical injury and limit the extent of damage due to lightning strikes.

High-voltage cable Cable used for electric power transmission at high voltage

A high-voltage cable is a cable used for electric power transmission at high voltage. A cable includes a conductor and insulation. Cables are considered to be fully insulated. This means that they have a fully rated insulation system that will consist of insulation, semi-con layers, and a metallic shield. This is in contrast to an overhead line, which may include insulation but not fully rated for operating voltage. High-voltage cables of differing types have a variety of applications in instruments, ignition systems, and alternating current (AC) and direct current (DC) power transmission. In all applications, the insulation of the cable must not deteriorate due to the high-voltage stress, ozone produced by electric discharges in air, or tracking. The cable system must prevent contact of the high-voltage conductor with other objects or persons, and must contain and control leakage current. Cable joints and terminals must be designed to control the high-voltage stress to prevent the breakdown of the insulation.

Corona ring

A corona ring, more correctly referred to as an anti-corona ring, is a toroid of conductive material, usually metal, which is attached to a terminal or other irregular hardware piece of high voltage equipment. The purpose of the corona ring is to distribute the electric field gradient and lower its maximum values below the corona threshold, preventing corona discharge. Corona rings are used on very high voltage power transmission insulators and switchgear, and on scientific research apparatus that generates high voltages. A very similar related device, the grading ring, is used around insulators.

Film capacitor Electrical capacitor with an insulating plastic film as the dielectric

Film capacitors, plastic film capacitors, film dielectric capacitors, or polymer film capacitors, generically called film caps as well as power film capacitors, are electrical capacitors with an insulating plastic film as the dielectric, sometimes combined with paper as carrier of the electrodes.

Aluminium diethyl phosphinate Chemical compound

Aluminium diethyl phosphinate is a chemical compound with formula Al(C
4
H
10
O
2
P
)3. It decomposes above 300 °C.

References

  1. "Tech Brief Comparative Tracking Index" (PDF). Retrieved January 29, 2018.