The RKM code, [1] also referred to as "letter and numeral code for resistance and capacitance values and tolerances", [1] "letter and digit code for resistance and capacitance values and tolerances", [2] [3] or informally as "R notation" [4] [5] [6] [7] [8] [9] is a notation to specify resistor and capacitor values defined in the international standard IEC 60062 (formerly IEC 62) since 1952. Other standards including DIN 40825 (1973), BS 1852 (1975), [10] IS 8186 (1976), and EN 60062 (1993) have also accepted it. The updated IEC 60062:2016, [1] amended in 2019, comprises the most recent release of the standard.
Originally meant also as part marking code, this shorthand notation is widely used in electrical engineering to denote the values of resistors and capacitors in circuit diagrams and in the production of electronic circuits (for example in bills of material and in silk screens). This method avoids overlooking the decimal separator, which may not be rendered reliably on components or when duplicating documents.
The standards also define a color code for fixed resistors .
R47 | 0.47 ohm |
4R7 | 4.7 ohm |
470R | 470 ohm |
4K7 | 4.7 kilohm |
47K | 47 kilohm |
47K3 | 47.3 kilohm |
470K | 470 kilohm |
4M7 | 4.7 megohm |
For brevity, the notation omits to always specify the unit (ohm or farad) explicitly and instead relies on implicit knowledge raised from the usage of specific letters either only for resistors or for capacitors, [nb 1] the case used (uppercase letters are typically used for resistors, lowercase letters for capacitors), [nb 2] a part's appearance, and the context.
The notation also avoids using a decimal separator and replaces it by a letter associated with the prefix symbol for the particular value. [nb 3]
This is not only for brevity (for example when printed on the part or PCB), but also to circumvent the problem that decimal separators tend to "disappear" when photocopying printed circuit diagrams.
Another advantage is the easier sortability of values which helps to optimize the bill of materials by combining similar part values to improve maintainability and reduce costs. [nb 4]
The code letters are loosely related to the corresponding SI prefix, but there are several exceptions, where the capitalization differs or alternative letters are used.
For example, 8K2
indicates a resistor value of 8.2 kΩ. Additional zeros imply tighter tolerance, for example 15M0
.
When the value can be expressed without the need for a prefix, an "R" or "F" is used instead of the decimal separator. For example, 1R2
indicates 1.2 Ω, and 18R
indicates 18 Ω.
Code letter | SI prefix | Multiplier [12] | |||
---|---|---|---|---|---|
Resistance [ Ω ] | Capacitance [ F ] | Name | Symbol | Base 10 | Value |
— | p (P [nb 2] ) | pico | p | × 10−12 | × 0.000000000001 |
— | n (N [nb 2] ) | nano | n | × 10−9 | × 0.000000001 |
— | μ (u, U [nb 2] ) | micro | μ | × 10−6 | × 0.000001 |
L | m (M [nb 1] [nb 2] ) | milli | m | × 10−3 | × 0.001 |
R (E [nb 5] ) | F | — | — | × 100 | × 1 |
K (k [nb 6] ) | — | kilo | k | × 103 | × 1000 |
M [nb 1] | — | mega | M | × 106 | × 1000000 |
G | — | giga | G | × 109 | × 1000000000 |
T | — | tera | T | × 1012 | × 1000000000000 |
For resistances, the standard dictates the use of the uppercase letters L
(for 10−3), R
(for 100 = 1), K
(for 103), M
(for 106), and G
(for 109) to be used instead of the decimal point.
The usage of the letter R
instead of the SI unit symbol Ω for ohms stems from the fact that the Greek letter Ω is absent from most older character encodings (though it is present in the now-ubiquitous Unicode) and therefore is sometimes impossible to reproduce, in particular in some CAD/CAM environments. The letter R
was chosen because visually it loosely resembles the Ω glyph, and also because it works nicely as a mnemonic for resistance in many languages.[ citation needed ]
The letters G
and T
weren't part of the first issue of the standard, which pre-dates the introduction of the SI system (hence the name "RKM code"), but were added after the adoption of the corresponding SI prefixes.
The introduction of the letter L
in more recent issues of the standard (instead of an SI prefix m
for milli) is justified to maintain the rule of only using uppercase letters for resistances (the otherwise resulting M
was already in use for mega).
Similar, the standard prescribes the following lowercase letters for capacitances to be used instead of the decimal point: p
(for 10−12), n
(for 10−9), μ
(for 10−6), m
(for 10−3), but uppercase F
(for 100 = 1) for farad.
The letters p
and n
weren't part of the first issue of the standard, but were added after the adoption of the corresponding SI prefixes.
In cases where the Greek letter μ
is not available, the standard allows it to be replaced by u
(or U
, when only uppercase letters are available). This usage of u
instead of μ
is also in line with ISO 2955 (1974, [13] 1983 [14] ), DIN 66030 (Vornorm 1973; [15] 1980, [16] [17] 2002 [18] ), BS 6430 (1983) and Health Level 7 (HL7), [19] which allow the prefix μ
to be substituted by the letter u
(or U
) in circumstances in which only the Latin alphabet is available.
Several manufacturers of resistors utilize the RKM code as part of the components' manufacturer's part numbers (MPNs). [20] [21]
Though non-standard, some manufacturers also use the RKM code to mark inductors with "R" indicating the decimal point in microhenry (e.g. 4R7 for 4.7 μH). [22] [23]
A similar non-standard notation using the unit symbol instead of a decimal separator is sometimes used to indicate voltages (i.e. 0V8 for 0.8 V, 1V8 for 1.8 V, 3V3 for 3.3 V or 5V0 for 5.0 V [24] [25] [26] ) in contexts where a decimal separator would be inappropriate (e.g. in signal or pin names, in file names, or in labels or subscripts).
Letter code for resistance and capacitance tolerances:
Code letter | Tolerance | |||
---|---|---|---|---|
Resistance | Capacitance | Relative | Absolute | |
Symmetrical | Asymmetrical | C <10 pF only | ||
A | A | variable (±0.05%) | variable | variable |
B | B | ±0.1% | — | |
C | C | ±0.25% | — | ±0.25 pF |
D | D | ±0.5% | — | ±0.5 pF |
E | ±0.005% | — | — | |
F | F | ±1.0% | — | ±1.0 pF |
G | G | ±2.0% | — | ±2.0 pF |
H | H | ±3.0% | — | — |
J | J | ±5.0% | — | — |
K | K | ±10% | — | — |
L | ±0.01% | — | — | |
M | M | ±20% | — | — |
N | ±30% | — | — | |
P | ±0.02% | — | — | |
Q | — | −10/+30% | — | |
S | — | −20/+50% | — | |
T | — | −10/+50% | — | |
W | ±0.05% | — | — | |
Z | — | −20/+80% | — |
Before the introduction of the RKM code, some of the letters for symmetrical tolerances (viz. G, J, K, M) were already used in US military contexts following the American War Standard (AWS) and Joint Army-Navy Specifications (JAN) since the mid-1940s. [27]
Letter codes for the temperature coefficient of resistance (TCR):
Code letter | ppm/K |
---|---|
K | 1 |
L | 2 |
M | 5 |
N | 10 |
P | 15 |
Q | 25 |
R | 50 |
S | 100 |
U | 250 |
Z | other |
Example: J8 = August 2017 (or August 1997)
Some manufacturers also used the production date code as a stand-alone code to indicate the production date of integrated circuits. [33]
Some manufacturers specify a three-character date code with a two-digit week number following the year letter. [34]
IEC 60062 also specifies a four-character year/week code.
Example: 78 = August 2017
IEC 60062 also specifies a four-character year/week code.
IEC 60062 also specifies a single-character four-year cycle year/month code. [nb 9]
Year | Month | Letter |
---|---|---|
1993 1997 2001 2005 2009 2013 2017 2021 | 1 | A |
2 | B | |
3 | C | |
4 | D | |
5 | E | |
6 | F | |
7 | G | |
8 | H | |
9 | J | |
10 | K | |
11 | L | |
12 | M |
Year | Month | Letter |
---|---|---|
1994 1998 2002 2006 2010 2014 2018 2022 | 1 | N |
2 | P | |
3 | Q | |
4 | R | |
5 | S | |
6 | T | |
7 | U | |
8 | V | |
9 | W | |
10 | X | |
11 | Y | |
12 | Z |
Year | Month | Letter |
---|---|---|
1995 1999 2003 2007 2011 2015 2019 2023 | 1 | a |
2 | b | |
3 | c | |
4 | d | |
5 | e | |
6 | f | |
7 | g | |
8 | h | |
9 | j | |
10 | k | |
11 | l | |
12 | m |
Year | Month | Letter |
---|---|---|
1996 2000 2004 2008 2012 2016 2020 2024 | 1 | n |
2 | p | |
3 | q | |
4 | r | |
5 | s | |
6 | t | |
7 | u | |
8 | v | |
9 | w | |
10 | x | |
11 | y | |
12 | z |
For resistances following the (E48 or) E96 series of preferred values, the former EIA-96 as well as IEC 60062:2016 define a special three-character marking code for resistors to be used on small parts. The code consists of two digits denoting one of the "positions" in the series of E96 values followed by a letter indicating the multiplier.
For capacitances following the (E3, E6, E12 or) E24 series of preferred values, the former ANSI/EIA-198-D:1991, ANSI/EIA-198-1-E:1998 and ANSI/EIA-198-1-F:2002 as well as the amendment IEC 60062:2016/AMD1:2019 to IEC 60062 define a special two-character marking code for capacitors for very small parts which leave no room to print any longer codes onto them. The code consists of an uppercase letter denoting the two significant digits of the value followed by a digit indicating the multiplier. The EIA standard also defines a number of lowercase letters to specify a number of values not found in E24. [35]
M
was an exception to the rule that all different letters are supposed to be used for resistances and capacitances. Today, a lowercase letter m
should be used for capacitances whenever possible to avoid confusion.F
)..
and ,
), and these characters are also used as thousands separators in some areas, avoiding to use decimal separators also has the advantage of not risking to become ambiguous in an international context.E
instead of R
is not standardized in IEC 60062, but nevertheless sometimes seen in practice. It stems from the fact, that R
is used in symbolic names for resistors as well, and it is also used in a similar fashion but with incompatible meaning in other part marking codes. It may therefore cause confusion in some contexts. Visually, the letter E
loosely resembles a small Greek letter omega (ω) turned sideways. Historically (i.e. in pre-WWII documents), before ohms were denoted using the uppercase Greek omega (Ω), a small omega (ω) was sometimes used for this purpose as well, as in 56ω for 56 Ω. However, the letter E
is conflictive with the similar looking but incompatible E notation in engineering, and it may therefore cause considerable confusion as well.K
only, however, a lowercase k
is nevertheless often seen in schematics and bills of materials probably because the corresponding SI prefix is defined as a lowercase k
.G
(6
), I
(J
, 1
), O
(0
, Q
, D
), Q
(O
, D
, 0
), Y
, Z
(2
) are not used as their glyphs look similar to other letters and digits.A
, J
, M
) the code for the most part uses digits. Since letter O
is easily confused with digit 0
, the code is arranged so that the letter O
is used for October, the tenth month, rather than for January.I
/i
and O
/o
are not used as their glyphs look similar to other letters and digits.ASCII, an acronym for American Standard Code for Information Interchange, is a character encoding standard for electronic communication. ASCII codes represent text in computers, telecommunications equipment, and other devices. ASCII has just 128 code points, of which only 95 are printable characters, which severely limit its scope. The set of available punctuation had significant impact on the syntax of computer languages and text markup. ASCII hugely influenced the design of character sets used by modern computers, including Unicode which has over a million code points, but the first 128 of these are the same as ASCII.
Hexadecimal is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.
ISO/IEC 8859-1:1998, Information technology—8-bit single-byte coded graphic character sets—Part 1: Latin alphabet No. 1, is part of the ISO/IEC 8859 series of ASCII-based standard character encodings, first edition published in 1987. ISO/IEC 8859-1 encodes what it refers to as "Latin alphabet no. 1", consisting of 191 characters from the Latin script. This character-encoding scheme is used throughout the Americas, Western Europe, Oceania, and much of Africa. It is the basis for some popular 8-bit character sets and the first two blocks of characters in Unicode.
A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses. High-power resistors that can dissipate many watts of electrical power as heat may be used as part of motor controls, in power distribution systems, or as test loads for generators. Fixed resistors have resistances that only change slightly with temperature, time or operating voltage. Variable resistors can be used to adjust circuit elements, or as sensing devices for heat, light, humidity, force, or chemical activity.
A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or submultiple of the unit. All metric prefixes used today are decadic. Each prefix has a unique symbol that is prepended to any unit symbol. The prefix kilo-, for example, may be added to gram to indicate multiplication by one thousand: one kilogram is equal to one thousand grams. The prefix milli-, likewise, may be added to metre to indicate division by one thousand; one millimetre is equal to one thousandth of a metre.
Scientific notation is a way of expressing numbers that are too large or too small to be conveniently written in decimal form, since to do so would require writing out an inconveniently long string of digits. It may be referred to as scientific form or standard index form, or standard form in the United Kingdom. This base ten notation is commonly used by scientists, mathematicians, and engineers, in part because it can simplify certain arithmetic operations. On scientific calculators, it is usually known as "SCI" display mode.
An electronic color code or electronic colour code is used to indicate the values or ratings of electronic components, usually for resistors, but also for capacitors, inductors, diodes and others. A separate code, the 25-pair color code, is used to identify wires in some telecommunications cables. Different codes are used for wire leads on devices such as transformers or in building wiring.
A decimal separator is a symbol that separates the integer part from the fractional part of a number written in decimal form. Different countries officially designate different symbols for use as the separator. The choice of symbol also affects the choice of symbol for the thousands separator used in digit grouping.
Micro is a unit prefix in the metric system denoting a factor of 10−6. It comes from the Greek word μικρός, meaning "small".
Engineering notation or engineering form (also technical notation) is a version of scientific notation in which the exponent of ten is always selected to be divisible by three to match the common metric prefixes, i.e. scientific notation that aligns with powers of a thousand, for example, 531×103 instead of 5.31×105 (but on calculator displays written without the ×10 to save space). As an alternative to writing powers of 10, SI prefixes can be used, which also usually provide steps of a factor of a thousand. On most calculators, engineering notation is called "ENG" mode as scientific notation is denoted SCI.
ISO 31-0 is the introductory part of international standard ISO 31 on quantities and units. It provides guidelines for using physical quantities, quantity and unit symbols, and coherent unit systems, especially the SI. It was intended for use in all fields of science and technology and is augmented by more specialized conventions defined in other parts of the ISO 31 standard. ISO 31-0 was withdrawn on 17 November 2009. It is superseded by ISO 80000-1. Other parts of ISO 31 have also been withdrawn and replaced by parts of ISO 80000.
Capacitors are manufactured in many styles, forms, dimensions, and from a large variety of materials. They all contain at least two electrical conductors, called plates, separated by an insulating layer (dielectric). Capacitors are widely used as parts of electrical circuits in many common electrical devices.
In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term still encountered in a few compound names, such as the condenser microphone. It is a passive electronic component with two terminals.
A ceramic capacitor is a fixed-value capacitor where the ceramic material acts as the dielectric. It is constructed of two or more alternating layers of ceramic and a metal layer acting as the electrodes. The composition of the ceramic material defines the electrical behavior and therefore applications. Ceramic capacitors are divided into two application classes:
A numeral is a character that denotes a number. The decimal number digits 0–9 are used widely in various writing systems throughout the world, however the graphemes representing the decimal digits differ widely. Therefore Unicode includes 22 different sets of graphemes for the decimal digits, and also various decimal points, thousands separators, negative signs, etc. Unicode also includes several non-decimal numerals such as Aegean numerals, Roman numerals, counting rod numerals, Mayan numerals, Cuneiform numerals and ancient Greek numerals. There is also a large number of typographical variations of the Western Arabic numerals provided for specialized mathematical use and for compatibility with earlier character sets, such as ² or ②, and composite characters such as ½.
The ISO basic Latin alphabet is an international standard for a Latin-script alphabet that consists of two sets of 26 letters, codified in various national and international standards and used widely in international communication. They are the same letters that comprise the current English alphabet. Since medieval times, they are also the same letters of the modern Latin alphabet. The order is also important for sorting words into alphabetical order.
Film capacitors, plastic film capacitors, film dielectric capacitors, or polymer film capacitors, generically called film caps as well as power film capacitors, are electrical capacitors with an insulating plastic film as the dielectric, sometimes combined with paper as carrier of the electrodes.
A niobium electrolytic capacitor is an electrolytic capacitor whose anode (+) is made of passivated niobium metal or niobium monoxide, on which an insulating niobium pentoxide layer acts as a dielectric. A solid electrolyte on the surface of the oxide layer serves as the capacitor's cathode (−).
IEC 61000-4-5 is an international standard by the International Electrotechnical Commission on surge immunity. In an electrical installation, disruptive surges can appear on power and data lines. Their sources include abrupt load switching and faults in the power system, as well as induced lightning transients from an indirect lightning strike. It necessitates the test of surge immunity in electrical or electronic equipment. IEC 61000-4-5 defines test set-up, procedures, and classification levels.
The E series is a system of preferred numbers derived for use in electronic components. It consists of the E3, E6, E12, E24, E48, E96 and E192 series, where the number after the 'E' designates the quantity of logarithmic value "steps" per decade. Although it is theoretically possible to produce components of any value, in practice the need for inventory simplification has led the industry to settle on the E series for resistors, capacitors, inductors, and zener diodes. Other types of electrical components are either specified by the Renard series or are defined in relevant product standards.
Part marking: XXX=Inductance value in uH, R= decimal point. If no R is present then last character equals number of zeros
These are the inductances expressed in a unit of microhenry (uH). The first two digits indicate significant figures and the third digit a multiplier. When there is an "R", it indicates a decimal point, and all numbers are significant figures.