IEC 61334

Last updated

IEC 61334, known as Distribution automation using distribution line carrier systems, is a standard for low-speed reliable power line communications by electricity meters, water meters and SCADA. [1] It is also known as spread frequency-shift keying (S-FSK) and was formerly known as IEC 1334 before IEC's most recent renumbering. It is actually a series of standards describing the researched physical environment of power lines, a well-adapted physical layer, a workable low-power media access layer, and a management interface. Related standards use the physical layer (e.g. Internet Protocol over S-FSK), but not the higher layers. [2]

Contents

The physical layer synchronizes a small packet of tones to the zero-crossing of the power line's voltage. The tones are chosen by utilities, not specified in the standard. Tones are usually between 20 kHz and 100 kHz, and should be separated by at least 10 kHz to prevent cross talk. One tone is chosen for mark (i.e. a binary 1), and the other for space (i.e. 0). The standard permits each zero-crossing to convey 1, 2, 4 or 8 bits, with increased sensitivity to timing as the number of bits increases. In multiphase power lines, a separate signal might be sent on each phase to speed up the transmission.

The standard's low speed is caused by the limited number of bits per power line cycle. The speed is also limited by noise, and the local jitter of the AC line's zero crossing. The high reliability comes from its reliable timing system (i.e. zero crossing), high signal to noise ratio (frequencies are chosen to avoid common power line noise), lack of intermodulation distortion, and adaptive signal detection.

The most significant bits are sent first, unlike a conventional serial port. The data from zero crossings should be collected into 8-bit bytes. Each byte is collected into 42-byte packets. The first four bytes of each packet are a preamble to measure the channel's current condition. This is followed by 38 bytes of data, and 3 byte-times of silence.

S-FSK centers tones around the time when the AC line passes through zero voltage. In this way, the tones avoid most radio-frequency noise from arcing. (It is common for dirty insulators to arc at the highest point of the voltage, and thus generate a wide-band burst of noise.) Since tone pairs are chosen by utilities, different districts can use different tone pairs to avoid interference.

To avoid other interference, receivers can improve their signal-to-noise ratio by adapting their decoder. The silence and the preamble allow the receiver's signal processing to measure the channel's noise ratios. Depending on the signal to noise ratios, the bits can be recovered from the difference between the power of the mark and space tones, the power of the mark tones only, or the space tones only. The system should be able to adjust the receiving method on each 42-byte packet.

Bit timing is typically recovered from the boundaries of tones, much like a UART that is triggered by a start bit. Timing is roughly centered on the zero crossing with a timer from the previous zero crossing that can enable the bit detection. Practical bit timing cannot be derived from the zero crossing alone, due to local jitter and noise in the zero crossing caused by varying local loads on the grid.

The bytes from the low-layer packets are reformed into bytes for the higher layers. The higher link-layer strongly resembles HDLC, except with a novel feature that allows selected stations to retransmit messages. [3] The management interface layer provides remote control of a station's protocol layers, including diagnostics and configuration. For example, it lets a central controller read a unit's signal to noise ratios, and set the bit that enables a station to retransmit weak stations. [4] [5]

The protocol layers are designed to integrate with any application layer, but the presence of a management interface suggests a design targeted to DLMS/COSEM, a widely used EU standard for the application layer of meters and SCADA. DLMS/COSEM requires a management interface.

Spread frequency-shift keying

S-FSK (spread frequency-shift keying) is a modulation scheme that combines some of the advantages of classical spread-spectrum modulation (immunity against narrow-band interference) with some of the advantages of classical frequency-shift keying (FSK is low complexity). The difference between S-FSK and classical FSK is that in S-FSK, the mark frequency is placed far from the space frequency . The frequencies are placed far enough apart that frequency-selective fading and narrow-band interference only blocks one of the frequencies, so the receiver can still recover all the data from the other frequency. [6]

List of IEC 61334 parts

See also

Related Research Articles

In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the carrier signal, with a separate signal called the modulation signal that typically contains information to be transmitted. For example, the modulation signal might be an audio signal representing sound from a microphone, a video signal representing moving images from a video camera, or a digital signal representing a sequence of binary digits, a bitstream from a computer. The carrier is higher in frequency than the modulation signal. The purpose of modulation is to impress the information on the carrier wave, which is used to carry the information to another location. In radio communication the modulated carrier is transmitted through space as a radio wave to a radio receiver. Another purpose is to transmit multiple channels of information through a single communication medium, using frequency division multiplexing (FDM). For example in cable television which uses FDM, many carrier signals carrying different television channels are transported through a single cable to customers. Since each carrier occupies a different frequency, the channels do not interfere with each other. At the destination end, the carrier signal is demodulated to extract the information bearing modulation signal.

In general terms, throughput is the rate of production or the rate at which something is processed.

X10 (industry standard)

X10 is a protocol for communication among electronic devices used for home automation (domotics). It primarily uses power line wiring for signaling and control, where the signals involve brief radio frequency bursts representing digital information. A wireless radio-based protocol transport is also defined.

In telecommunications and computer networking, a network packet is a formatted unit of data carried by a packet-switched network. A packet consists of control information and user data; the latter is also known as the payload. Control information provides data for delivering the payload. Typically, control information is found in packet headers and trailers.

A Controller Area Network is a robust vehicle bus standard designed to allow microcontrollers and devices to communicate with each other's applications without a host computer. It is a message-based protocol, designed originally for multiplex electrical wiring within automobiles to save on copper, but it can also be used in many other contexts. For each device, the data in a frame is transmitted sequentially but in such a way that if more than one device transmits at the same time, the highest priority device can continue while the others back off. Frames are received by all devices, including by the transmitting device.

Power-line communication carries data on a conductor that is also used simultaneously for AC electric power transmission or electric power distribution to consumers.

DMX512 Digital communication network standard for controlling stage lighting and effects

DMX512 is a standard for digital communication networks that are commonly used to control stage lighting and effects. It was originally intended as a standardized method for controlling light dimmers, which, prior to DMX512, had employed various incompatible proprietary protocols. It soon became the primary method for linking controllers to dimmers and special effects devices such as fog machines and intelligent lights. DMX has also expanded to uses in non-theatrical interior and architectural lighting, at scales ranging from strings of Christmas lights to electronic billboards and stadium or arena concerts. DMX can now be used to control almost anything, reflecting its popularity in theaters and venues.

The System Management Bus is a single-ended simple two-wire bus for the purpose of lightweight communication. Most commonly it is found in computer motherboards for communication with the power source for ON/OFF instructions.

The Bell 202 modem was an early (1976) modem standard developed by the Bell System. It specifies audio frequency-shift keying (AFSK) to encode and transfer data at a rate of 1200 bits per second, half-duplex. It has separate sets of circuits for 1200 bps and 300 bps rates. These signalling protocols, also used in third-party modems, are referred to generically as Bell 202 modulation, and any device employing it as Bell-202-compatible.

IEC 62056 is a set of standards for electricity metering data exchange by International Electrotechnical Commission.

In a digitally modulated signal or a line code, symbol rate or modulation rate is the number of symbol changes, waveform changes, or signaling events across the transmission medium per unit of time. The symbol rate is measured in baud (Bd), baud rate or symbols per second. In the case of a line code, the symbol rate is the pulse rate in pulses per second. Each symbol can represent or convey one or several bits of data. The symbol rate is related to the gross bit rate expressed in bits per second.

IEEE 1355

IEEE Standard 1355-1995, IEC 14575, or ISO 14575 is a data communications standard for Heterogeneous Interconnect (HIC).

Digital Addressable Lighting Interface (DALI) is a trademark for network-based products that control lighting. The underlying technology was established by a consortium of lighting equipment manufacturers as a successor for 1-10 V/0–10 V lighting control systems, and as an open standard alternative to several proprietary protocols. The DALI, DALI-2 and D4i trademarks are owned by the lighting industry alliance, DiiA.

DeviceNet is a network protocol used in the automation industry to interconnect control devices for data exchange. It utilizes the Common Industrial Protocol over a Controller Area Network media layer and defines an application layer to cover a range of device profiles. Typical applications include information exchange, safety devices, and large I/O control networks.

In computer networks, a syncword, sync character, sync sequence or preamble is used to synchronize a data transmission by indicating the end of header information and the start of data. The syncword is a known sequence of data used to identify the start of a frame, and is also called reference signal or midamble in wireless communications.

Display Serial Interface

The Display Serial Interface (DSI) is a specification by the Mobile Industry Processor Interface (MIPI) Alliance aimed at reducing the cost of display controllers in a mobile device. It is commonly targeted at LCD and similar display technologies. It defines a serial bus and a communication protocol between the host, the source of the image data, and the device which is the destination.

An Answer To Reset (ATR) is a message output by a contact Smart Card conforming to ISO/IEC 7816 standards, following electrical reset of the card's chip by a card reader. The ATR conveys information about the communication parameters proposed by the card, and the card's nature and state.

Asymmetric digital subscriber line DSL service where downstream bandwidth exceeds upstream bandwidth

Asymmetric digital subscriber line (ADSL) is a type of digital subscriber line (DSL) technology, a data communications technology that enables faster data transmission over copper telephone lines than a conventional voiceband modem can provide. ADSL differs from the less common symmetric digital subscriber line (SDSL). In ADSL, bandwidth and bit rate are said to be asymmetric, meaning greater toward the customer premises (downstream) than the reverse (upstream). Providers usually market ADSL as an Internet access service primarily for downloading content from the Internet, but not for serving content accessed by others.

Internet 0 is a low-speed physical layer designed to route 'IP over anything.' It was developed at MIT's Center for Bits and Atoms by Neil Gershenfeld, Raffi Krikorian, and Danny Cohen. When it was invented, a number of other proposals were being labelled as "internet 2." The name was chosen to emphasize that this was designed to be a slow, but very inexpensive internetworking system, and forestall "high-performance" comparison questions such as "how fast is it?"

References

  1. IEC 61334-5-1, preface.
  2. ADD GRUP, Russia
  3. IEC 61334-4-1
  4. IEC 61334-4-1154
  5. IEC 61334-1155
  6. "Power Line Carrier Modem". 2014. p. 16