Energy-Efficient Ethernet

Last updated
Logo of the study group and standard task force Energy Efficient Ethernet.gif
Logo of the study group and standard task force

In computer networking, Energy-Efficient Ethernet (EEE) is a set of enhancements to twisted-pair, twinaxial, backplane, and optical fiber Ethernet physical-layer variants that reduce power consumption during periods of low data activity. [1] The intention is to reduce power consumption by at least half, while retaining full compatibility with existing equipment. [2]

Contents

The Institute of Electrical and Electronics Engineers (IEEE), through the IEEE 802.3az task force, developed the standard. The first study group had its call for interest in November 2006, and the official standards task force was authorized in May 2007. [3] The IEEE ratified the final standard in September 2010. [4] Some companies introduced technology to reduce the power required for Ethernet before the standard was ratified, using the name Green Ethernet.

Some energy-efficient switch integrated circuits were developed before the IEEE 802.3az Energy-Efficient Ethernet standard was finalized. [5] [6]

Potential savings

In 2005, all the network interface controllers in the United States (in computers, switches, and routers) used an estimated 5.3 terawatt-hours of electricity. [7] According to a researcher at the Lawrence Berkeley Laboratory, Energy-Efficient Ethernet can potentially save an estimated US$450 million a year in energy costs in the US. Most of the savings would come from homes (US$200 million) and offices (US$170 million), and the remaining US$80 million from data centers. [8]

Concepts

The power reduction is accomplished in a few ways. In Fast Ethernet and faster links, constant and significant energy is used by the physical layer as transmitters are active regardless of whether data is being sent. If they could be put into sleep mode when no data is being sent, that energy could be saved. [8] When the controlling software or firmware decides that no data needs to be sent, it can issue a low-power idle (LPI) request to the Ethernet controller physical layer PHY. The PHY will then send LPI symbols for a specified time onto the link, and then disable its transmitter. Refresh signals are sent periodically to maintain link signaling integrity. When there is data to transmit, a normal IDLE signal is sent for a predetermined period of time. The data link is considered to be always operational, as the receive signal circuit remains active even when the transmit path is in sleep mode. [9]

Green Ethernet

Green Ethernet technology was a superset of the 802.3az standard. In addition to the link load power savings of Energy-Efficient Ethernet, Green Ethernet works in one of two ways. First, it detects link status, allowing each port on the switch to power down into a standby mode when a connected device, such as a computer, is not active. Second, it detects cable length and adjusts the power used for transmission accordingly. Standard switches provide enough power to send a signal up to 100 meters (330 ft). [10] However, this is often unnecessary in the SOHO environment, where 5 to 10 meters (16 to 33 ft) of cabling are typical between rooms. Moreover, small data centers can also benefit from this approach since the majority of cabling is confined to a single room with a few meters of cabling among servers and switches. In addition to the pure power saving benefits of Green Ethernet, backing off the transmit power on shorter cable runs reduces alien crosstalk, and improves the overall performance of the cabling system.

Green Ethernet also encompasses the use of more efficient circuitry in Ethernet chips, and the use of offload engines on Ethernet interface cards intended for network servers. [6] In April 2008, the term was used for switches, and, in July 2008, used with wireless routers which featured user-selectable off periods for Wi-Fi to further reduce energy consumption. [11]

Projected power savings of up to 80 percent were predicted using Green Ethernet switches, [12] translating into a longer product life due to reduced heat dissipation. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Ethernet</span> Computer networking technology

Ethernet is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.

100BaseVG is a 100 Mbit/s Ethernet standard specified to run over four pairs of Category 3 cable. It is also called 100VG-AnyLAN because it was defined to carry both Ethernet and Token Ring frame types.

<span class="mw-page-title-main">Ethernet over twisted pair</span> Ethernet physical layers using twisted-pair cables

Ethernet over twisted-pair technologies use twisted-pair cables for the physical layer of an Ethernet computer network. They are a subset of all Ethernet physical layers.

A network switch is networking hardware that connects devices on a computer network by using packet switching to receive and forward data to the destination device.

<span class="mw-page-title-main">Fast Ethernet</span> Ethernet standards that carry data at the nominal rate of 100 Mbit/s

In computer networking, Fast Ethernet physical layers carry traffic at the nominal rate of 100 Mbit/s. The prior Ethernet speed was 10 Mbit/s. Of the Fast Ethernet physical layers, 100BASE-TX is by far the most common.

<span class="mw-page-title-main">Gigabit Ethernet</span> Standard for Ethernet networking at a data rate of 1 gigabit per second

In computer networking, Gigabit Ethernet is the term applied to transmitting Ethernet frames at a rate of a gigabit per second. The most popular variant, 1000BASE-T, is defined by the IEEE 802.3ab standard. It came into use in 1999, and has replaced Fast Ethernet in wired local networks due to its considerable speed improvement over Fast Ethernet, as well as its use of cables and equipment that are widely available, economical, and similar to previous standards. The first standard for faster 10 Gigabit Ethernet was approved in 2002.

StarLAN was the first IEEE 802.3 standard for Ethernet over twisted pair wiring. It was standardized by the IEEE Standards Association as 802.3e in 1986, as the 1BASE5 version of Ethernet. The StarLAN Task Force was chaired by Bob Galin.

10BROAD36 is an obsolete computer network standard in the Ethernet family. It was developed during the 1980s and specified in IEEE 802.3b-1985. The Institute of Electrical and Electronics Engineers standards committee IEEE 802 published the standard that was ratified in 1985 as an additional section 11 to the base Ethernet standard. It was also issued as ISO/IEC 8802-3 in 1989.

<span class="mw-page-title-main">Power over Ethernet</span> System for delivering power along with data over an Ethernet cable

Power over Ethernet (PoE) describes any of several standards or ad hoc systems that pass electric power along with data on twisted-pair Ethernet cabling. This allows a single cable to provide both a data connection and enough electricity to power networked devices such as wireless access points (WAPs), IP cameras and VoIP phones.

HomePlug is the family name for various power line communications specifications under the HomePlug designation, each with unique capabilities and compatibility with other HomePlug specifications.

<span class="mw-page-title-main">Link aggregation</span> Using multiple network connections in parallel to increase capacity and reliability

In computer networking, link aggregation is the combining of multiple network connections in parallel by any of several methods. Link aggregation increases total throughput beyond what a single connection could sustain, and provides redundancy where all but one of the physical links may fail without losing connectivity. A link aggregation group (LAG) is the combined collection of physical ports.

<span class="mw-page-title-main">Ethernet physical layer</span> Electrical or optical properties between network devices

The physical-layer specifications of the Ethernet family of computer network standards are published by the Institute of Electrical and Electronics Engineers (IEEE), which defines the electrical or optical properties and the transfer speed of the physical connection between a device and the network or between network devices. It is complemented by the MAC layer and the logical link layer. An implementation of a specific physical layer is commonly referred to as PHY.

40 Gigabit Ethernet (40GbE) and 100 Gigabit Ethernet (100GbE) are groups of computer networking technologies for transmitting Ethernet frames at rates of 40 and 100 gigabits per second (Gbit/s), respectively. These technologies offer significantly higher speeds than 10 Gigabit Ethernet. The technology was first defined by the IEEE 802.3ba-2010 standard and later by the 802.3bg-2011, 802.3bj-2014, 802.3bm-2015, and 802.3cd-2018 standards. The first succeeding Terabit Ethernet specifications were approved in 2017.

The current portfolio of PowerConnect switches are now being offered as part of the Dell Networking brand: information on this page is an overview of all current and past PowerConnect switches as per August 2013, but any updates on current portfolio will be detailed on the Dell Networking page.

The 10 Gbit/s Ethernet Passive Optical Network standard, better known as 10G-EPON allows computer network connections over telecommunication provider infrastructure. The standard supports two configurations: symmetric, operating at 10 Gbit/s data rate in both directions, and asymmetric, operating at 10 Gbit/s in the downstream direction and 1 Gbit/s in the upstream direction. It was ratified as IEEE 802.3av standard in 2009. EPON is a type of passive optical network, which is a point-to-multipoint network using passive fiber-optic splitters rather than powered devices for fan-out from hub to customers.

IT energy management or Green IT is the analysis and management of energy demand within the Information Technology department in any organization. IT energy demand accounts for approximately 2% of global CO2 emissions, approximately the same level as aviation, and represents over 10% of all the global energy consumption. IT can account for 25% of a modern office building's energy cost.

<span class="mw-page-title-main">10 Gigabit Ethernet</span> Standards for Ethernet at ten times the speed of Gigabit Ethernet

10 Gigabit Ethernet is a group of computer networking technologies for transmitting Ethernet frames at a rate of 10 gigabits per second. It was first defined by the IEEE 802.3ae-2002 standard. Unlike previous Ethernet standards, 10GbE defines only full-duplex point-to-point links which are generally connected by network switches; shared-medium CSMA/CD operation has not been carried over from the previous generations of Ethernet standards so half-duplex operation and repeater hubs do not exist in 10GbE. The first standard for faster 100 Gigabit Ethernet links was approved in 2010.

<span class="mw-page-title-main">OPEN Alliance SIG</span>

The OPEN Alliance is a non-profit, special interest group (SIG) of mainly automotive industry and technology providers collaborating to encourage wide scale adoption of Ethernet-based communication as the standard in automotive networking applications.

BroadR-Reach technology is an Ethernet physical layer standard designed for automotive connectivity applications. BroadR-Reach allows multiple in-vehicle systems to simultaneously access information over unshielded single twisted pair cable. BroadR-Reach was invented and is promoted by Broadcom Corporation, now Broadcom Limited.

IEEE 802.3bz, NBASE-T and MGBASE-T are standards released in 2016 for Ethernet over twisted pair at speeds of 2.5 and 5 Gbit/s. These use the same cabling as the ubiquitous Gigabit Ethernet, yet offer higher speeds. The resulting standards are named 2.5GBASE-T and 5GBASE-T.

References

  1. IEEE 802.3 Clause 78
  2. Sean Michael Kerner (July 17, 2009). "Energy Efficient Ethernet hits standards milestone — InternetNews:The Blog — Sean Michael Kerner". Internetnews blog. Archived from the original on July 18, 2009. Retrieved July 5, 2011.
  3. "IEEE 802.3 Energy Efficient Ethernet Study Group". September 21, 2007. Retrieved July 5, 2011.
  4. "IEEE ratifies new 8023az standard to reduce network energy footprint". Lightwaveonline.com. October 5, 2010. Archived from the original on October 9, 2011. Retrieved July 5, 2011.
  5. "Top OEMs 'Go Green' With Broadcom's 65nm SMB Switch Family" (Press release). Broadcom Corporation. June 3, 2009. Retrieved July 5, 2011.
  6. 1 2 Nicholas Ilyadis (April 1, 2010). "Broadcom Energy Efficiency Initiatives" (PDF). Broadcom. Archived from the original (PDF) on June 13, 2010. Retrieved July 5, 2011.
  7. Prachi Patel-Predd (May 2008). "Energy-Efficient Ethernet". IEEE SpectrumEnergy-Efficient Ethernet: Ethernet connections waste lots of watts. It need not be so. Spectrum.ieee.org. Retrieved July 5, 2011.
  8. 1 2 Merritt, Rick (May 8, 2008). "Energy-efficient Ethernet standard gains traction". EE Times. Retrieved July 5, 2011.
  9. Spurgeon, Charles (2014). Ethernet: The Definitive Guide. O'Reilly. pp. 119–120. ISBN   978-1449361846.
  10. "Ethernet 100BaseTX and 10BaseT Cables: Guidelines and specifications". Cisco 10000 Series Routers. Cisco Systems. August 1, 2006. Specifications and Connection Limits for 100-Mbps Transmission. Retrieved August 29, 2010.
  11. "D-Link First Company to Offer Green Wi-Fi Home Networking". DLinkGreen.com. D-Link. July 28, 2008. Archived from the original on March 3, 2016. Retrieved July 5, 2011.
  12. "D-Link First Company to Offer 'Green Ethernet™' Technology for Network Connectivity, Embrace Energy-Saving Initiatives". D-Link. October 24, 2007. Archived from the original on March 3, 2016. Retrieved July 5, 2011. For example, when connected and subsequently powered down, the DGS-2208 multi-port desktop switch can realize up to 80 percent savings in power usage*, and the other D-Link 'Green Ethernet' switches can save up to 45 percent in power usage.
  13. Kenney, Brad (April 11, 2008). "Green Ethernet". IndustryWeek. Archived from the original on 2013-06-02. Retrieved July 5, 2011.