MPEG media transport

Last updated
MPEG media transport
Developed by MPEG
Initial release2013
Type of format Digital container format
Container for Audio, video, data
Standard ISO/IEC 23008-1

MPEG media transport (MMT), specified as ISO/IEC 23008-1 (MPEG-H Part 1), is a digital container standard developed by Moving Picture Experts Group (MPEG) that supports High Efficiency Video Coding (HEVC) video. [1] [2] [3] MMT was designed to transfer data using the all-Internet Protocol (All-IP) network. [4]

Contents

History

In April 2013 a list of requirements was released for MMT and the general requirements stated that MMT must have clear advantages when compared to existing container formats and that it must have low computational demands. [5] [6] Also in April 2013 a list of use cases for MMT was released which included the need for it to support Ultra HD video content, 3D video content, interactive content, user-generated content, applications that support multi-device presentation, subtitles, picture-in-picture video, and multiple audio tracks. [5] [7] MPEG has estimated that the first edition of MMT will reach Final Draft International Standard (FDIS) in November 2013. [8] [9]

On May 30, 2013, NHK started showing test equipment based on MMT at the NHK Science & Technology Research Laboratories Open House 2013. [10]

Schedule

The timescale for the completion of the first version of the MMT standard in the MPEG standardization process: [9]

Highlights

MPEG MMT [15] succeeds MPEG-2 TS as the media transport solution for broadcasting and IP network content distribution, with the aim of serving new applications like UHDTV, second screen, ..., etc., with full support of HTML5 and simplification of packetization and synchronization with a pure IP based transport. It has the following technology innovations:

Solutions and demos

SK Telecom (The leading mobile operator in Korea) and Samsung have developed and tested their True Real-Time Mobile Streaming system based on the emerging MPEG MMT standard over SKT's commercial LTE network with Btv video streaming platform. The results showed a latency reduction of 80%, which would significantly improve the user experience of live content streaming. Current mobile video streaming technologies often suffer up to 15 seconds of latency, but its implementation of MMT has reduced that to 3 seconds. SK Telecom said they will put more effort to strengthen their mobile network service quality by developing innovative and advanced technologies with the aim of having it commercially available next year.

Sinclair Broadcast Group and Technicolor delivered successfully ATSC 3.0 4K UHD testbed platform. The Technicolor platform, based on open audio, video, and transport standards including Scalable HEVC (SHVC), MPEG-H audio, and MPEG-MMT transport, has been integrated into Sinclair's experimental OFDM transmission system in Baltimore, Maryland. The impact of this deployment is that broadcasters will be able to deliver the highest quality content, inclusive of 4K UHD broadcast in a simultaneous transmission to consumers both at home and on the go.

In Japan, Super Hi-Vision test services are planned to begin in 2016, and commercial services are planned to begin in 2020. NHK has studied MPEG Media Transport (MMT) as the transport protocol for the next generation of broadcasting systems [16] since it enables hybrid delivery using broadcasting and broadband networks. They have demonstrated MMT-based 8K Super Hi-Vision Broadcasting at their open house exhibition.

libatsc3 provides an ATSC 3.0 NGBP Open Source Library - Tools for parsing and decoding STLTP, LMT, LLS, SLS, and NextGen supported standards. In January 2020, libatsc3 released a baseline Android sample app providing PCAP playback of ROUTE/DASH and implemented the world's first open-source MMT player with MFU (Media Fragmentation Unit) de-encapsulation. By using the MFU for media essence decoding (e.g. single samples are pushed to the media decoder), rather than the traditional MPU (Media Presentation Unit) of ISOBMFF and DASH, the baseline NGBP implementation can provide robust media playback regardless of packetized DU (data unit) loss, transient MFU loss, or sustained MPU loss.

Rapid recovery and de-encapsulation durability are also enabled by implementing out-of-order de-packetization using the MMTHSample hint at the start of every media sample - providing the sample number, data unit length, and offset. Other implementations relying on ISOBMFF with MOOF and TRUN box provide only one emission of sample length and duration MPU, posing a high risk of full GOP loss disproportionate to the MDAT size (e.g. 1KB of ALC packet loss may result up to the loss of ~1MB or more of the essence). libatsc3 is designed to be robust and durable in inherently lossy ATSC 3.0 IP-multicast emissions, including mobile reception, to demonstrate the potential of NextGen across all devices and platforms. More information at libatsc3 Overview.

Expanding on the libatsc3 android proof-of-concept, ONEMedia 3.0 and ngbp.org have developed an ExoPlayer plugin for MMT, including support for MFU de-packetization and out-of-order mode support. Source and sample Android Activity available on GitHub: ExoPlayer ISO23008-1 MMT extension

See also

Related Research Articles

<span class="mw-page-title-main">Moving Picture Experts Group</span> Alliance of working groups to set standards for multimedia coding

The Moving Picture Experts Group (MPEG) is an alliance of working groups established jointly by ISO and IEC that sets standards for media coding, including compression coding of audio, video, graphics, and genomic data; and transmission and file formats for various applications. Together with JPEG, MPEG is organized under ISO/IEC JTC 1/SC 29 – Coding of audio, picture, multimedia and hypermedia information.

<span class="mw-page-title-main">MPEG-2</span> Video encoding standard

MPEG-2 is a standard for "the generic coding of moving pictures and associated audio information". It describes a combination of lossy video compression and lossy audio data compression methods, which permit storage and transmission of movies using currently available storage media and transmission bandwidth. While MPEG-2 is not as efficient as newer standards such as H.264/AVC and H.265/HEVC, backwards compatibility with existing hardware and software means it is still widely used, for example in over-the-air digital television broadcasting and in the DVD-Video standard.

Advanced Audio Coding (AAC) is an audio coding standard for lossy digital audio compression. Designed to be the successor of the MP3 format, AAC generally achieves higher sound quality than MP3 encoders at the same bit rate.

<span class="mw-page-title-main">Advanced Video Coding</span> Most widely used standard for video compression

Advanced Video Coding (AVC), also referred to as H.264 or MPEG-4 Part 10, is a video compression standard based on block-oriented, motion-compensated coding. It is by far the most commonly used format for the recording, compression, and distribution of video content, used by 91% of video industry developers as of September 2019. It supports resolutions up to and including 8K UHD.

<span class="mw-page-title-main">ATSC standards</span> Standards for digital television in the US

Advanced Television Systems Committee (ATSC) standards are an American set of standards for digital television transmission over terrestrial, cable and satellite networks. It is largely a replacement for the analog NTSC standard and, like that standard, is used mostly in the United States, Mexico, Canada, and South Korea. Several former NTSC users, such as Japan, have not used ATSC during their digital television transition, because they adopted other systems such as ISDB developed by Japan, and DVB developed in Europe, for example.

Digital storage media command and control (DSM-CC) is a toolkit for developing control channels associated with MPEG-1 and MPEG-2 streams. It is defined in part 6 of the MPEG-2 standard and uses a client/server model connected via an underlying network.

3GP is a multimedia container format defined by the Third Generation Partnership Project (3GPP) for 3G UMTS multimedia services. It is used on 3G mobile phones but can also be played on some 2G and 4G phones.

<span class="mw-page-title-main">High-Efficiency Advanced Audio Coding</span> Audio codec

High-Efficiency Advanced Audio Coding (HE-AAC) is an audio coding format for lossy data compression of digital audio defined as an MPEG-4 Audio profile in ISO/IEC 14496–3. It is an extension of Low Complexity AAC (AAC-LC) optimized for low-bitrate applications such as streaming audio. The usage profile HE-AAC v1 uses spectral band replication (SBR) to enhance the modified discrete cosine transform (MDCT) compression efficiency in the frequency domain. The usage profile HE-AAC v2 couples SBR with Parametric Stereo (PS) to further enhance the compression efficiency of stereo signals.

MPEG transport stream or simply transport stream (TS) is a standard digital container format for transmission and storage of audio, video, and Program and System Information Protocol (PSIP) data. It is used in broadcast systems such as DVB, ATSC and IPTV.

MPEG-4 Part 17, or MPEG-4 Timed Text (MP4TT), or MPEG-4 Streaming text format is the text-based subtitle format for MPEG-4, published as ISO/IEC 14496-17 in 2006. It was developed in response to the need for a generic method for coding of text as one of the multimedia components within audiovisual presentations.

These tables compare features of multimedia container formats, most often used for storing or streaming digital video or digital audio content. To see which multimedia players support which container format, look at comparison of media players.

MPEG-4 Audio Lossless Coding, also known as MPEG-4 ALS, is an extension to the MPEG-4 Part 3 audio standard to allow lossless audio compression. The extension was finalized in December 2005 and published as ISO/IEC 14496-3:2005/Amd 2:2006 in 2006. The latest description of MPEG-4 ALS was published as subpart 11 of the MPEG-4 Audio standard in December 2019.

The Video Coding Experts Group or Visual Coding Experts Group is a working group of the ITU Telecommunication Standardization Sector (ITU-T) concerned with standards for compression coding of video, images, audio, and other signals. It is responsible for standardization of the "H.26x" line of video coding standards, the "T.8xx" line of image coding standards, and related technologies.

Packetized Elementary Stream (PES) is a specification in the MPEG-2 Part 1 (Systems) and ITU-T H.222.0 that defines carrying of elementary streams in packets within MPEG program streams and MPEG transport streams. The elementary stream is packetized by encapsulating sequential data bytes from the elementary stream inside PES packet headers.

Program stream is a container format for multiplexing digital audio, video and more. The PS format is specified in MPEG-1 Part 1 and MPEG-2 Part 1, Systems. The MPEG-2 Program Stream is analogous and similar to ISO/IEC 11172 Systems layer and it is forward compatible.

<span class="mw-page-title-main">MP4 file format</span> MP4; digital format for storing video and audio

MPEG-4 Part 14 or MP4 is a digital multimedia container format most commonly used to store video and audio, but it can also be used to store other data such as subtitles and still images. Like most modern container formats, it allows streaming over the Internet. The only filename extension for MPEG-4 Part 14 files as defined by the specification is .mp4. MPEG-4 Part 14 is a standard specified as a part of MPEG-4.

The ISO base media file format (ISOBMFF) is a container file format that defines a general structure for files that contain time-based multimedia data such as video and audio. It is standardized in ISO/IEC 14496-12, a.k.a. MPEG-4 Part 12, and was formerly also published as ISO/IEC 15444-12, a.k.a. JPEG 2000 Part 12.

MPEG-H is a group of international standards under development by the ISO/IEC Moving Picture Experts Group (MPEG). It has various "parts" – each of which can be considered a separate standard. These include a media transport protocol standard, a video compression standard, an audio compression standard, a digital file format container standard, three reference software packages, three conformance testing standards, and related technologies and technical reports. The group of standards is formally known as ISO/IEC 23008 – High efficiency coding and media delivery in heterogeneous environments. Development of the standards began around 2010, and the first fully approved standard in the group was published in 2013. Most of the standards in the group have been revised or amended several times to add additional extended features since their first edition.

MPEG-H 3D Audio, specified as ISO/IEC 23008-3, is an audio coding standard developed by the ISO/IEC Moving Picture Experts Group (MPEG) to support coding audio as audio channels, audio objects, or higher order ambisonics (HOA). MPEG-H 3D Audio can support up to 64 loudspeaker channels and 128 codec core channels.

<span class="mw-page-title-main">LCEVC</span> Video coding standard

Low Complexity Enhancement Video Coding (LCEVC) is a ISO/IEC video coding standard developed by the Moving Picture Experts Group (MPEG) under the project name MPEG-5 Part 2 LCEVC.

References

  1. "Study of ISO/IEC CD 23008-1 MPEG Media Transport". MPEG . Retrieved 2013-05-31.
  2. "MPEG 102 - Shanghai". MPEG. Retrieved 2013-05-31.
  3. "MPEG news: a report from the 103rd meeting, Geneva, Switzerland". 2013-01-30. Retrieved 2013-06-02.
  4. Song Su-hyun (2013-01-30). "Global body adopts latest media transport tech". Korea JoongAng Daily . Retrieved 2013-06-02.
  5. 1 2 "MPEG 103 - Genève". MPEG. Retrieved 2013-05-31.
  6. "Requirements on MPEG Media Transport (MMT)". MPEG. Retrieved 2013-05-31.
  7. "Use Cases for MPEG Media Transport (MMT)". MPEG. Retrieved 2013-05-31.
  8. "MPEG 104 - Incheon". MPEG. Retrieved 2013-05-31.
  9. 1 2 "Work plan and time line". MPEG. Retrieved 2013-05-31.
  10. "Media Transport Technologies for Next Generation Broadcasting Systems". NHK. Retrieved 2013-05-09.
  11. "Text of ISO/IEC 2nd CD 23008-1 MPEG Media Transport". MPEG. Retrieved 2013-05-31.
  12. Christian Timmerer (2013-01-30). "MPEG news: a report from the 103rd meeting, Geneva, Switzerland". Multimedia Communication. Retrieved 2013-06-02.
  13. "ISO/IEC DIS 23008-1". International Organization for Standardization. 2013-05-13. Retrieved 2013-06-02.
  14. "ISO/IEC 23008-1:2014". International Organization for Standardization. 2014-05-23. Retrieved 2014-11-01.
  15. Lim, Youngkwon; Aoki, Shuichi; Bouazizi, Imed; Song, Jaeyeon (2014). "New MPEG Transport Standard for Next Generation Hybrid Broadcasting System with IP". IEEE Transactions on Broadcasting. 60 (2): 160–169. doi:10.1109/TBC.2014.2315472. S2CID   21516186.
  16. "NHK STRL | Science & Technology Research Laboratories". Archived from the original on 2014-10-24. Retrieved 2014-10-18.