In numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time).
The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum. This process is repeated recursively, pairing up the sums to prove the next scale, which leads to differences and a final sum.
The most commonly used set of discrete wavelet transforms was formulated by the Belgian mathematician Ingrid Daubechies in 1988. This formulation is based on the use of recurrence relations to generate progressively finer discrete samplings of an implicit mother wavelet function; each resolution is twice that of the previous scale. In her seminal paper, Daubechies derives a family of wavelets, the first of which is the Haar wavelet. Interest in this field has exploded since then, and many variations of Daubechies' original wavelets were developed. [1] [2] [3]
The dual-tree complex wavelet transform (WT) is a relatively recent enhancement to the discrete wavelet transform (DWT), with important additional properties: It is nearly shift invariant and directionally selective in two and higher dimensions. It achieves this with a redundancy factor of only , substantially lower than the undecimated DWT. The multidimensional (M-D) dual-tree WT is nonseparable but is based on a computationally efficient, separable filter bank (FB). [4]
Other forms of discrete wavelet transform include the Le Gall–Tabatabai (LGT) 5/3 wavelet developed by Didier Le Gall and Ali J. Tabatabai in 1988 (used in JPEG 2000 or JPEG XS ), [5] [6] [7] the Binomial QMF developed by Ali Naci Akansu in 1990, [8] the set partitioning in hierarchical trees (SPIHT) algorithm developed by Amir Said with William A. Pearlman in 1996, [9] the non- or undecimated wavelet transform (where downsampling is omitted), and the Newland transform (where an orthonormal basis of wavelets is formed from appropriately constructed top-hat filters in frequency space). Wavelet packet transforms are also related to the discrete wavelet transform. Complex wavelet transform is another form.
The Haar DWT illustrates the desirable properties of wavelets in general. First, it can be performed in operations; second, it captures not only a notion of the frequency content of the input, by examining it at different scales, but also temporal content, i.e. the times at which these frequencies occur. Combined, these two properties make the Fast wavelet transform (FWT) an alternative to the conventional fast Fourier transform (FFT).
Due to the rate-change operators in the filter bank, the discrete WT is not time-invariant but actually very sensitive to the alignment of the signal in time. To address the time-varying problem of wavelet transforms, Mallat and Zhong proposed a new algorithm for wavelet representation of a signal, which is invariant to time shifts. [10] According to this algorithm, which is called a TI-DWT, only the scale parameter is sampled along the dyadic sequence 2^j (j∈Z) and the wavelet transform is calculated for each point in time. [11] [12]
The discrete wavelet transform has a huge number of applications in science, engineering, mathematics and computer science. Most notably, it is used for signal coding, to represent a discrete signal in a more redundant form, often as a preconditioning for data compression. Practical applications can also be found in signal processing of accelerations for gait analysis, [13] [14] image processing, [15] [16] in digital communications and many others. [17] [18] [19]
It is shown that discrete wavelet transform (discrete in scale and shift, and continuous in time) is successfully implemented as analog filter bank in biomedical signal processing for design of low-power pacemakers and also in ultra-wideband (UWB) wireless communications. [20]
Wavelets are often used to denoise two dimensional signals, such as images. The following example provides three steps to remove unwanted white Gaussian noise from the noisy image shown. Matlab was used to import and filter the image.
The first step is to choose a wavelet type, and a level N of decomposition. In this case biorthogonal 3.5 wavelets were chosen with a level N of 10. Biorthogonal wavelets are commonly used in image processing to detect and filter white Gaussian noise, [21] due to their high contrast of neighboring pixel intensity values. Using these wavelets a wavelet transformation is performed on the two dimensional image.
Following the decomposition of the image file, the next step is to determine threshold values for each level from 1 to N. Birgé-Massart strategy [22] is a fairly common method for selecting these thresholds. Using this process individual thresholds are made for N = 10 levels. Applying these thresholds are the majority of the actual filtering of the signal.
The final step is to reconstruct the image from the modified levels. This is accomplished using an inverse wavelet transform. The resulting image, with white Gaussian noise removed is shown below the original image. When filtering any form of data it is important to quantify the signal-to-noise-ratio of the result.[ citation needed ] In this case, the SNR of the noisy image in comparison to the original was 30.4958%, and the SNR of the denoised image is 32.5525%. The resulting improvement of the wavelet filtering is a SNR gain of 2.0567%. [23]
Choosing other wavelets, levels, and thresholding strategies can result in different types of filtering. In this example, white Gaussian noise was chosen to be removed. Although, with different thresholding, it could just as easily have been amplified.
To illustrate the differences and similarities between the discrete wavelet transform with the discrete Fourier transform, consider the DWT and DFT of the following sequence: (1,0,0,0), a unit impulse.
The DFT has orthogonal basis (DFT matrix):
while the DWT with Haar wavelets for length 4 data has orthogonal basis in the rows of:
(To simplify notation, whole numbers are used, so the bases are orthogonal but not orthonormal.)
Preliminary observations include:
The DWT demonstrates the localization: the (1,1,1,1) term gives the average signal value, the (1,1,–1,–1) places the signal in the left side of the domain, and the (1,–1,0,0) places it at the left side of the left side, and truncating at any stage yields a downsampled version of the signal:
The DFT, by contrast, expresses the sequence by the interference of waves of various frequencies – thus truncating the series yields a low-pass filtered version of the series:
Notably, the middle approximation (2-term) differs. From the frequency domain perspective, this is a better approximation, but from the time domain perspective it has drawbacks – it exhibits undershoot – one of the values is negative, though the original series is non-negative everywhere – and ringing, where the right side is non-zero, unlike in the wavelet transform. On the other hand, the Fourier approximation correctly shows a peak, and all points are within of their correct value, though all points have error. The wavelet approximation, by contrast, places a peak on the left half, but has no peak at the first point, and while it is exactly correct for half the values (reflecting location), it has an error of for the other values.
This illustrates the kinds of trade-offs between these transforms, and how in some respects the DWT provides preferable behavior, particularly for the modeling of transients.
The DWT of a signal is calculated by passing it through a series of filters. First the samples are passed through a low-pass filter with impulse response resulting in a convolution of the two:
The signal is also decomposed simultaneously using a high-pass filter . The outputs give the detail coefficients (from the high-pass filter) and approximation coefficients (from the low-pass). It is important that the two filters are related to each other and they are known as a quadrature mirror filter.
However, since half the frequencies of the signal have now been removed, half the samples can be discarded according to Nyquist's rule. The filter output of the low-pass filter in the diagram above is then subsampled by 2 and further processed by passing it again through a new low-pass filter and a high- pass filter with half the cut-off frequency of the previous one, i.e.:
This decomposition has halved the time resolution since only half of each filter output characterises the signal. However, each output has half the frequency band of the input, so the frequency resolution has been doubled.
With the subsampling operator
the above summation can be written more concisely.
However computing a complete convolution with subsequent downsampling would waste computation time.
The Lifting scheme is an optimization where these two computations are interleaved.
This decomposition is repeated to further increase the frequency resolution and the approximation coefficients decomposed with high- and low-pass filters and then down-sampled. This is represented as a binary tree with nodes representing a sub-space with a different time-frequency localisation. The tree is known as a filter bank.
At each level in the above diagram the signal is decomposed into low and high frequencies. Due to the decomposition process the input signal must be a multiple of where is the number of levels.
For example a signal with 32 samples, frequency range 0 to and 3 levels of decomposition, 4 output scales are produced:
Level | Frequencies | Samples |
---|---|---|
3 | to | 4 |
to | 4 | |
2 | to | 8 |
1 | to | 16 |
The filterbank implementation of wavelets can be interpreted as computing the wavelet coefficients of a discrete set of child wavelets for a given mother wavelet . In the case of the discrete wavelet transform, the mother wavelet is shifted and scaled by powers of two
where is the scale parameter and is the shift parameter, both of which are integers.
Recall that the wavelet coefficient of a signal is the projection of onto a wavelet, and let be a signal of length . In the case of a child wavelet in the discrete family above,
Now fix at a particular scale, so that is a function of only. In light of the above equation, can be viewed as a convolution of with a dilated, reflected, and normalized version of the mother wavelet, , sampled at the points . But this is precisely what the detail coefficients give at level of the discrete wavelet transform. Therefore, for an appropriate choice of and , the detail coefficients of the filter bank correspond exactly to a wavelet coefficient of a discrete set of child wavelets for a given mother wavelet .
As an example, consider the discrete Haar wavelet, whose mother wavelet is . Then the dilated, reflected, and normalized version of this wavelet is , which is, indeed, the highpass decomposition filter for the discrete Haar wavelet transform.
The filterbank implementation of the Discrete Wavelet Transform takes only O(N) in certain cases, as compared to O(N log N) for the fast Fourier transform.
Note that if and are both a constant length (i.e. their length is independent of N), then and each take O(N) time. The wavelet filterbank does each of these two O(N) convolutions, then splits the signal into two branches of size N/2. But it only recursively splits the upper branch convolved with (as contrasted with the FFT, which recursively splits both the upper branch and the lower branch). This leads to the following recurrence relation
which leads to an O(N) time for the entire operation, as can be shown by a geometric series expansion of the above relation.
As an example, the discrete Haar wavelet transform is linear, since in that case and are constant length 2.
The locality of wavelets, coupled with the O(N) complexity, guarantees that the transform can be computed online (on a streaming basis). This property is in sharp contrast to FFT, which requires access to the entire signal at once. It also applies to the multi-scale transform and also to the multi-dimensional transforms (e.g., 2-D DWT). [24]
In its simplest form, the DWT is remarkably easy to compute.
The Haar wavelet in Java:
publicstaticint[]discreteHaarWaveletTransform(int[]input){// This function assumes that input.length=2^n, n>1int[]output=newint[input.length];for(intlength=input.length/2;;length=length/2){// length is the current length of the working area of the output array.// length starts at half of the array size and every iteration is halved until it is 1.for(inti=0;i<length;++i){intsum=input[i*2]+input[i*2+1];intdifference=input[i*2]-input[i*2+1];output[i]=sum;output[length+i]=difference;}if(length==1){returnoutput;}//Swap arrays to do next iterationSystem.arraycopy(output,0,input,0,length);}}
Complete Java code for a 1-D and 2-D DWT using Haar, Daubechies, Coiflet, and Legendre wavelets is available from the open source project: JWave. Furthermore, a fast lifting implementation of the discrete biorthogonal CDF 9/7 wavelet transform in C, used in the JPEG 2000 image compression standard can be found here (archived 5 March 2012).
This figure shows an example of applying the above code to compute the Haar wavelet coefficients on a sound waveform. This example highlights two key properties of the wavelet transform:
In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values as the original input sequence. The DFT is therefore said to be a frequency domain representation of the original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is continuous, and the DFT provides discrete samples of one cycle. If the original sequence is one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.
In mathematics, Fourier analysis is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer.
In engineering, a transfer function of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. It is widely used in electronic engineering tools like circuit simulators and control systems. In simple cases, this function can be represented as a two-dimensional graph of an independent scalar input versus the dependent scalar output. Transfer functions for components are used to design and analyze systems assembled from components, particularly using the block diagram technique, in electronics and control theory.
In signal processing, a digital filter is a system that performs mathematical operations on a sampled, discrete-time signal to reduce or enhance certain aspects of that signal. This is in contrast to the other major type of electronic filter, the analog filter, which is typically an electronic circuit operating on continuous-time analog signals.
A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases, and then returns to zero one or more times. Wavelets are termed a "brief oscillation". A taxonomy of wavelets has been established, based on the number and direction of its pulses. Wavelets are imbued with specific properties that make them useful for signal processing.
In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an interval to be represented in terms of an orthonormal basis. The Haar sequence is now recognised as the first known wavelet basis and is extensively used as a teaching example.
In digital signal processing, a quadrature mirror filter is a filter whose magnitude response is the mirror image around of that of another filter. Together these filters, first introduced by Croisier et al., are known as the quadrature mirror filter pair.
In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response is of finite duration, because it settles to zero in finite time. This is in contrast to infinite impulse response (IIR) filters, which may have internal feedback and may continue to respond indefinitely.
The Daubechies wavelets, based on the work of Ingrid Daubechies, are a family of orthogonal wavelets defining a discrete wavelet transform and characterized by a maximal number of vanishing moments for some given support. With each wavelet type of this class, there is a scaling function which generates an orthogonal multiresolution analysis.
In signal processing, a filter bank is an array of bandpass filters that separates the input signal into multiple components, each one carrying a sub-band of the original signal. One application of a filter bank is a graphic equalizer, which can attenuate the components differently and recombine them into a modified version of the original signal. The process of decomposition performed by the filter bank is called analysis ; the output of analysis is referred to as a subband signal with as many subbands as there are filters in the filter bank. The reconstruction process is called synthesis, meaning reconstitution of a complete signal resulting from the filtering process.
The fast wavelet transform is a mathematical algorithm designed to turn a waveform or signal in the time domain into a sequence of coefficients based on an orthogonal basis of small finite waves, or wavelets. The transform can be easily extended to multidimensional signals, such as images, where the time domain is replaced with the space domain. This algorithm was introduced in 1989 by Stéphane Mallat.
Originally known as optimal subband tree structuring (SB-TS), also called wavelet packet decomposition, is a wavelet transform where the discrete-time (sampled) signal is passed through more filters than the discrete wavelet transform (DWT).
The stationary wavelet transform (SWT) is a wavelet transform algorithm designed to overcome the lack of translation-invariance of the discrete wavelet transform (DWT). Translation-invariance is achieved by removing the downsamplers and upsamplers in the DWT and upsampling the filter coefficients by a factor of in the th level of the algorithm. The SWT is an inherently redundant scheme as the output of each level of SWT contains the same number of samples as the input – so for a decomposition of N levels there is a redundancy of N in the wavelet coefficients. This algorithm is more famously known as "algorithme à trous" in French which refers to inserting zeros in the filters. It was introduced by Holschneider et al.
In mathematics, a wavelet series is a representation of a square-integrable function by a certain orthonormal series generated by a wavelet. This article provides a formal, mathematical definition of an orthonormal wavelet and of the integral wavelet transform.
The lifting scheme is a technique for both designing wavelets and performing the discrete wavelet transform (DWT). In an implementation, it is often worthwhile to merge these steps and design the wavelet filters while performing the wavelet transform. This is then called the second-generation wavelet transform. The technique was introduced by Wim Sweldens.
The Gabor transform, named after Dennis Gabor, is a special case of the short-time Fourier transform. It is used to determine the sinusoidal frequency and phase content of local sections of a signal as it changes over time. The function to be transformed is first multiplied by a Gaussian function, which can be regarded as a window function, and the resulting function is then transformed with a Fourier transform to derive the time-frequency analysis. The window function means that the signal near the time being analyzed will have higher weight. The Gabor transform of a signal x(t) is defined by this formula:
In mathematics, Fourier–Bessel series is a particular kind of generalized Fourier series based on Bessel functions.
In electronics and signal processing, mainly in digital signal processing, a Gaussian filter is a filter whose impulse response is a Gaussian function. Gaussian filters have the properties of having no overshoot to a step function input while minimizing the rise and fall time. This behavior is closely connected to the fact that the Gaussian filter has the minimum possible group delay. A Gaussian filter will have the best combination of suppression of high frequencies while also minimizing spatial spread, being the critical point of the uncertainty principle. These properties are important in areas such as oscilloscopes and digital telecommunication systems.
In functional analysis, compactly supported wavelets derived from Legendre polynomials are termed Legendre wavelets or spherical harmonic wavelets. Legendre functions have widespread applications in which spherical coordinate system is appropriate. As with many wavelets there is no nice analytical formula for describing these harmonic spherical wavelets. The low-pass filter associated to Legendre multiresolution analysis is a finite impulse response (FIR) filter.
Wavelets are often used to analyse piece-wise smooth signals. Wavelet coefficients can efficiently represent a signal which has led to data compression algorithms using wavelets. Wavelet analysis is extended for multidimensional signal processing as well. This article introduces a few methods for wavelet synthesis and analysis for multidimensional signals. There also occur challenges such as directivity in multidimensional case.