Qualcomm code-excited linear prediction

Last updated
Qualcomm PureVoice
Filename extension
.qcp
Internet media type
audio/qcelp
Developed by Qualcomm
Initial release1994;29 years ago (1994)
Latest release
TIA IS-733
December 1999;23 years ago (1999-12)
Type of format Lossy audio
Open format?Yes
Free format?No

Qualcomm code-excited linear prediction (QCELP), also known as Qualcomm PureVoice, is a speech codec developed in 1994 by Qualcomm to increase the speech quality of the IS-96A codec earlier used in CDMA networks. It was later replaced with EVRC since it provides better speech quality with fewer bits. The two versions, QCELP8 and QCELP13, operate at 8 and 13 kilobits per second (Kbit/s) respectively.

In CDMA systems, a QCELP vocoder converts a sound signal into a signal transmissible within a circuit. In wired systems, voice signals are generally sampled at 8 kHz (that is, 8,000 sample values per second) and then encoded by 8-bit quantization for each sample value. Such a system transmits at 64 kbit/s, an expensive rate in a wireless system. A QCELP vocoder with variable rates can reduce the rate enough to fit a wireless system by coding the information more efficiently. In particular, it can change its own coding rates based on the speaker's volume or pitch; a louder or higher-pitched voice requires a higher rate.

Related Research Articles

Speech coding is an application of data compression of digital audio signals containing speech. Speech coding uses speech-specific parameter estimation using audio signal processing techniques to model the speech signal, combined with generic data compression algorithms to represent the resulting modeled parameters in a compact bitstream.

<span class="mw-page-title-main">Vocoder</span> Voice encryption, transformation, and synthesis device

A vocoder is a category of speech coding that analyzes and synthesizes the human voice signal for audio data compression, multiplexing, voice encryption or voice transformation.

Speex is an audio compression codec specifically tuned for the reproduction of human speech and also a free software speech codec that may be used on VoIP applications and podcasts. It is based on the CELP speech coding algorithm. Speex claims to be free of any patent restrictions and is licensed under the revised (3-clause) BSD license. It may be used with the Ogg container format or directly transmitted over UDP/RTP. It may also be used with the FLV container format.

<span class="mw-page-title-main">G.711</span> ITU-T recommendation

G.711 is a narrowband audio codec originally designed for use in telephony that provides toll-quality audio at 64 kbit/s. G.711 passes audio signals in the range of 300–3400 Hz and samples them at the rate of 8,000 samples per second, with the tolerance on that rate of 50 parts per million (ppm). Non-uniform (logarithmic) quantization with 8 bits is used to represent each sample, resulting in a 64 kbit/s bit rate. There are two slightly different versions: μ-law, which is used primarily in North America and Japan, and A-law, which is in use in most other countries outside North America.

cdmaOne First CDMA-based digital cellular technology

Interim Standard 95 (IS-95) was the first ever CDMA-based digital cellular technology. It was developed by Qualcomm and later adopted as a standard by the Telecommunications Industry Association in TIA/EIA/IS-95 release published in 1995. The proprietary name for IS-95 is cdmaOne.

In telecommunications and computing, bit rate is the number of bits that are conveyed or processed per unit of time.

Personal Digital Cellular (PDC) was a 2G mobile telecommunications standard used exclusively in Japan.

Adaptive Multi-Rate Wideband (AMR-WB) is a patented wideband speech audio coding standard developed based on Adaptive Multi-Rate encoding, using a similar methodology to algebraic code-excited linear prediction (ACELP). AMR-WB provides improved speech quality due to a wider speech bandwidth of 50–7000 Hz compared to narrowband speech coders which in general are optimized for POTS wireline quality of 300–3400 Hz. AMR-WB was developed by Nokia and VoiceAge and it was first specified by 3GPP.

<span class="mw-page-title-main">G.722</span> ITU-T recommendation

G.722 is an ITU-T standard 7 kHz wideband audio codec operating at 48, 56 and 64 kbit/s. It was approved by ITU-T in November 1988. Technology of the codec is based on sub-band ADPCM (SB-ADPCM). The corresponding narrow-band codec based on the same technology is G.726.

Mixed-excitation linear prediction (MELP) is a United States Department of Defense speech coding standard used mainly in military applications and satellite communications, secure voice, and secure radio devices. Its standardization and later development was led and supported by the NSA and NATO. The current "enhanced" version is known as MELPe.

Enhanced Variable Rate CODEC (EVRC) is a speech codec used in CDMA networks. It was developed in 1995 to replace the QCELP vocoder which used more bandwidth on the carrier's network, thus EVRC's primary goal was to offer the mobile carriers more capacity on their networks while not increasing the amount of bandwidth or wireless spectrum needed. EVRC uses RCELP technology.

Selectable Mode Vocoder (SMV) is variable bitrate speech coding standard used in CDMA2000 networks. SMV provides multiple modes of operation that are selected based on input speech characteristics.

Variable-Rate Multimode Wideband (VMR-WB) is a source-controlled variable-rate multimode codec designed for robust encoding/decoding of wideband/narrowband speech. The operation of VMR-WB is controlled by speech signal characteristics and by traffic condition of the network. Depending on the traffic conditions and the desired quality of service (QoS), one of the 4 operational modes is used. All operating modes of the existing VMR-WB standard are fully compliant with cdma2000 rate-set II. VMR-WB modes 0, 1, and 2 are cdma2000 native modes with mode 0 providing the highest quality and mode 2 the lowest ADR. VMR-WB mode 3 is the AMR-WB interoperable mode operating at an ADR slightly higher than mode 0 and providing a quality equal or better than that of AMR-WB at 12.65 kbit/s when in an interoperable interconnection with AMR-WB at 12.65 kbit/s.

Harmonic Vector Excitation Coding, abbreviated as HVXC is a speech coding algorithm specified in MPEG-4 Part 3 standard for very low bit rate speech coding. HVXC supports bit rates of 2 and 4 kbit/s in the fixed and variable bit rate mode and sampling frequency 8 kHz. It also operates at lower bitrates, such as 1.2 - 1.7 kbit/s, using a variable bit rate technique. The total algorithmic delay for the encoder and decoder is 36 ms.

<span class="mw-page-title-main">Secure voice</span> Encrypted voice communication

Secure voice is a term in cryptography for the encryption of voice communication over a range of communication types such as radio, telephone or IP.

Vector sum excited linear prediction (VSELP) is a speech coding method used in several cellular standards. The VSELP algorithm is an analysis-by-synthesis coding technique and belongs to the class of speech coding algorithms known as CELP.

Enhanced Variable Rate Codec B (EVRC-B) is a speech codec used by CDMA networks. EVRC-B is an enhancement to EVRC and compresses each 20 milliseconds of 8000 Hz, 16-bit sampled speech input into output frames of one of the four different sizes: Rate 1 - 171 bits, Rate 1/2 - 80 bits, Rate 1/4 - 40 bits, Rate 1/8 - 16 bits.

<span class="mw-page-title-main">G.718</span> ITU-T Recommendation

G.718 is an ITU-T Recommendation embedded scalable speech and audio codec providing high quality narrowband speech over the lower bit rates and high quality wideband speech over the complete range of bit rates. In addition, G.718 is designed to be highly robust to frame erasures, thereby enhancing the speech quality when used in internet protocol (IP) transport applications on fixed, wireless and mobile networks. Despite its embedded nature, the codec also performs well with both narrowband and wideband generic audio signals. The codec has an embedded scalable structure, enabling maximum flexibility in the transport of voice packets through IP networks of today and in future media-aware networks. In addition, the embedded structure of G.718 will easily allow the codec to be extended to provide a superwideband and stereo capability through additional layers which are currently under development in ITU-T Study Group 16. The bitstream may be truncated at the decoder side or by any component of the communication system to instantaneously adjust the bit rate to the desired value without the need for out-of-band signalling. The encoder produces an embedded bitstream structured in five layers corresponding to the five available bit rates: 8, 12, 16, 24 & 32 kbit/s.

aptX Family of proprietary audio codecs owned by Qualcomm

aptX is a family of proprietary audio codec compression algorithms owned by Qualcomm, with a heavy emphasis on wireless audio applications.

CDMA spectral efficiency refers to the system spectral efficiency in bit/s/Hz/site or Erlang/MHz/site that can be achieved in a certain CDMA based wireless communication system. CDMA techniques are characterized by a very low link spectral efficiency in (bit/s)/Hz as compared to non-spread spectrum systems, but a comparable system spectral efficiency.

References