Deterministic Networking

Last updated

Deterministic Networking (DetNet) is an effort by the IETF DetNet Working Group to study implementation of deterministic data paths for real-time applications with extremely low data loss rates, packet delay variation (jitter), and bounded latency, such as audio and video streaming, industrial automation, and vehicle control.

Contents

DetNet operates at the IP Layer 3 routed segments using a software-defined networking layer to provide IntServ and DiffServ integration, and delivers service over lower Layer 2 bridged segments using technologies such as MPLS and IEEE 802.1 Time-Sensitive Networking. [1] Deterministic Networking aims to migrate time-critical, high-reliability industrial control and audio-video applications from special-purpose Fieldbus networks (HDMI, CAN bus, PROFIBUS, RS-485, RS-422/RS-232, and I²C) to packet networks and IP in particular. DetNet will support both the new applications and existing IT applications on the same physical network.

To support real-time applications, DetNet implements reservation of data plane resources in intermediate nodes along the data flow path, calculation of explicit routes that do not depend on network topology, and redistribute data packets over time and/or space to deliver data even with the loss of one path.

Rationale

Standard IT infrastructure cannot efficiently handle latency-sensitive data. Switches and routers use fundamentally uncertain algorithms for processing packet/frames, which may result in sporadic data flow. A common solution for smoothing out these flows is to increase buffer sizes, but this has a negative effect on delivery latency because data has to fill the buffers before transmission to the next switch or router can start.

IEEE Time-Sensitive Networking (TSN) task group has defined deterministic algorithms for queuing, shaping and scheduling which allow each node to allocate bandwidth and latency according to requirements of each data flow, by computing the buffer size at the network switch. The same algorithms can be employed at higher network layers to improve delivery of IP packets and provide interoperability with TSN hardware when available.

Requirements

Applications from different fields often have fundamentally similar requirements, which may include: [2]

  1. Time synchronization at each node (routers/bridge)across the entire network, with accuracy from nanoseconds to microseconds.
  2. Deterministic data flow, which shall support:
    • unicast or multicast packets;
    • guaranteed minimum and maximum latency endpoint-to-endpoint across the entire network, with tight jitter when required;
    • Ethernet packet loss ratio from 10−9 to 10−12, wireless mesh networks around 10−5;
    • high utilization of the available network bandwidth (no need for massive over-provisioning);
    • flow processing without throttling, congestion feedback, or other network-defined transmission delay;
    • a fixed transmission schedule, or a maximum bandwidth and packet size.
  3. Scheduling, shaping, limiting, and controlling transmission at each node.
  4. Protection against misbehaving nodes (in both the data and the control planes): a flow cannot affect other flows even under high load.
  5. Reserving resources in nodes that carry the flow.

Operation

Resource allocation

To reduce contention related packet loss, resources such as buffer space or link bandwidth can be assigned to the flow along the path from source to destination. Maintaining adequate buffer storage at each node also limits maximum end-to-end latency. The maximum transmission rate and maximum packet size have to be explicitly defined for each flow.

Each network node along the path shall not exceed these data rates, as any packet sent out of scheduled time requires additional buffering on the next node, which may exceed its allocated resources. To limit data rates, traffic policing and shaping functions are applied at the ingress ports. This also protects regular IT traffic from misbehaving DetNet sources. Time-of-execution fields in the packets and sub-microsecond time synchronization across all nodes are used to ensure minimum end-to-end latency and eliminate irregular delivery (jitter). Jitter reduces the perceived quality of audiovisual applications, and control network applications built around serial communication protocols cannot handle jitter at all.

Service protection

Packet loss can also result from media errors and equipment failures. Packet replication and elimination and packet encoding provide service protection from these failures.

Replication and elimination works by spreading the data across several explicit paths and reassembling them in-order near the destination. Sequence number or timestamp is added to DetNet flow or transport protocol packet, then duplicate packets are eliminated and out-of-order packets are reordered, based on sequencing information and transmission logs, Adhering to the flow latency constraints also imposes constraints on misordering, as out-of-order packets impact the jitter and require additional buffering.

Different path lengths also require additional buffering to equalize the delays and ensure bandwidth constraints after failure recovery. Replication and elimination may be used by multiple DetNet nodes to improve protection against multiple failures. Packet encoding uses multiple transmission units for each packet, adding redundancy and error correction information from multiple packets to each transmission unit.

Explicit routes

In mesh networks, topology events such as failure or recovery can impact data flow even in remote network segments. A side effect of route changes is out-of-order packet delivery.

Real-time networks are often based on physical rings with a simple control protocol and two ports per device for redundant paths, though at a cost of increased hop count and latency. DetNet routes are typically explicitly defined and do not change (at least immediately) in response to network topology events, so there are no interruptions from routing or bridging protocol negotiations. Explicit routes can be established with RSVP-TE, Segment Routing, IS-IS, MPLS-TE label-switched path (LSP), or a software-defined networking layer.

Traffic engineering

IETF Traffic Engineering Architecture and Signaling (TEAS) work group maintains MPLS-TE LSP and RSVP-TE protocols. These traffic Engineering (TE) routing protocols translate DetNet flow specification to IEEE 802.1 TSN controls for queuing, shaping, and scheduling algorithms, such as IEEE 802.1Qav credit-based shaper, IEEE802.1Qbv time-triggered shaper with a rotating time scheduler, IEEE802.1Qch synchronized double and triple buffering, 802.1Qbu/802.3br Ethernet packet pre-emption, and 802.1CB frame replication and elimination for reliability. Protocol interworking defined by IEEE 802.1CB is used to advertise TSN sub-network capabilities to DetNet flows via the Active Destination MAC and VLAN Stream identification functions. DetNet flows are matched by destination MAC address, VLAN ID and priority parameters to Stream ID and QoS requirements for talkers and listeners in the AVB/TSN sub-network. [3]

Use cases

IETF foresees the following use cases: [4]

See also

Related Research Articles

Multiprotocol Label Switching (MPLS) is a routing technique in telecommunications networks that directs data from one node to the next based on labels rather than network addresses. Whereas network addresses identify endpoints, the labels identify established paths between endpoints. MPLS can encapsulate packets of various network protocols, hence the multiprotocol component of the name. MPLS supports a range of access technologies, including T1/E1, ATM, Frame Relay, and DSL.

Quality of service (QoS) is the description or measurement of the overall performance of a service, such as a telephony or computer network, or a cloud computing service, particularly the performance seen by the users of the network. To quantitatively measure quality of service, several related aspects of the network service are often considered, such as packet loss, bit rate, throughput, transmission delay, availability, jitter, etc.

Traffic shaping is a bandwidth management technique used on computer networks which delays some or all datagrams to bring them into compliance with a desired traffic profile. Traffic shaping is used to optimize or guarantee performance, improve latency, or increase usable bandwidth for some kinds of packets by delaying other kinds. It is often confused with traffic policing, the distinct but related practice of packet dropping and packet marking.

The Resource Reservation Protocol (RSVP) is a transport layer protocol designed to reserve resources across a network using the integrated services model. RSVP operates over an IPv4 or IPv6 and provides receiver-initiated setup of resource reservations for multicast or unicast data flows. It does not transport application data but is similar to a control protocol, like Internet Control Message Protocol (ICMP) or Internet Group Management Protocol (IGMP). RSVP is described in RFC 2205.

Resilient Packet Ring (RPR), as defined by IEEE standard 802.17, is a protocol designed for the transport of data traffic over optical fiber ring networks. The standard began development in November 2000 and has undergone several amendments since its initial standard was completed in June 2004. The amended standards are 802.17a through 802.17d, the last of which was adopted in May 2011. It is designed to provide the resilience found in SONET and Synchronous Digital Hierarchy networks but, instead of setting up circuit oriented connections, provides a packet based transmission, in order to increase the efficiency of Ethernet and IP services.

Packet loss occurs when one or more packets of data travelling across a computer network fail to reach their destination. Packet loss is either caused by errors in data transmission, typically across wireless networks, or network congestion. Packet loss is measured as a percentage of packets lost with respect to packets sent.

Avionics Full-Duplex Switched Ethernet (AFDX), also ARINC 664, is a data network, patented by international aircraft manufacturer Airbus, for safety-critical applications that utilizes dedicated bandwidth while providing deterministic quality of service (QoS). AFDX is a worldwide registered trademark by Airbus. The AFDX data network is based on Ethernet technology using commercial off-the-shelf (COTS) components. The AFDX data network is a specific implementation of ARINC Specification 664 Part 7, a profiled version of an IEEE 802.3 network per parts 1 & 2, which defines how commercial off-the-shelf networking components will be used for future generation Aircraft Data Networks (ADN). The six primary aspects of an AFDX data network include full duplex, redundancy, determinism, high speed performance, switched and profiled network.

<span class="mw-page-title-main">Computer network</span> Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

Bandwidth management is the process of measuring and controlling the communications on a network link, to avoid filling the link to capacity or overfilling the link, which would result in network congestion and poor performance of the network. Bandwidth is described by bit rate and measured in units of bits per second (bit/s) or bytes per second (B/s).

In audio and broadcast engineering, audio over Ethernet (AoE) is the use of an Ethernet-based network to distribute real-time digital audio. AoE replaces bulky snake cables or audio-specific installed low-voltage wiring with standard network structured cabling in a facility. AoE provides a reliable backbone for any audio application, such as for large-scale sound reinforcement in stadiums, airports and convention centers, multiple studios or stages.

Stream Reservation Protocol (SRP) is an enhancement to Ethernet that implements admission control. In September 2010 SRP was standardized as IEEE 802.1Qat which has subsequently been incorporated into IEEE 802.1Q-2011. SRP defines the concept of streams at layer 2 of the OSI model. Also provided is a mechanism for end-to-end management of the streams' resources, to guarantee quality of service (QoS).

In packet switching networks, traffic flow, packet flow or network flow is a sequence of packets from a source computer to a destination, which may be another host, a multicast group, or a broadcast domain. RFC 2722 defines traffic flow as "an artificial logical equivalent to a call or connection." RFC 3697 defines traffic flow as "a sequence of packets sent from a particular source to a particular unicast, anycast, or multicast destination that the source desires to label as a flow. A flow could consist of all packets in a specific transport connection or a media stream. However, a flow is not necessarily 1:1 mapped to a transport connection." Flow is also defined in RFC 3917 as "a set of IP packets passing an observation point in the network during a certain time interval." Packet flow temporal efficiency can be affected by one-way delay (OWD) that is described as a combination of the following components:

The Time-Triggered Ethernet standard defines a fault-tolerant synchronization strategy for building and maintaining synchronized time in Ethernet networks, and outlines mechanisms required for synchronous time-triggered packet switching for critical integrated applications and integrated modular avionics (IMA) architectures. SAE International released SAE AS6802 in November 2011.

Data center bridging (DCB) is a set of enhancements to the Ethernet local area network communication protocol for use in data center environments, in particular for use with clustering and storage area networks.

ITU-T Y.156sam Ethernet Service Activation Test Methodology is a draft recommendation under study by the ITU-T describing a new testing methodology adapted to the multiservice reality of packet-based networks.

Bufferbloat is a cause of high latency and jitter in packet-switched networks caused by excess buffering of packets. Bufferbloat can also cause packet delay variation, as well as reduce the overall network throughput. When a router or switch is configured to use excessively large buffers, even very high-speed networks can become practically unusable for many interactive applications like voice over IP (VoIP), audio streaming, online gaming, and even ordinary web browsing.

ITU-T Y.1564 is an Ethernet service activation test methodology, which is the new ITU-T standard for turning up, installing and troubleshooting Ethernet-based services. It is the only standard test methodology that allows for complete validation of Ethernet service-level agreements (SLAs) in a single test.

AES67 is a technical standard for audio over IP and audio over Ethernet (AoE) interoperability. The standard was developed by the Audio Engineering Society and first published in September 2013. It is a layer 3 protocol suite based on existing standards and is designed to allow interoperability between various IP-based audio networking systems such as RAVENNA, Livewire, Q-LAN and Dante.

Time-Sensitive Networking (TSN) is a set of standards under development by the Time-Sensitive Networking task group of the IEEE 802.1 working group. The TSN task group was formed in November 2012 by renaming the existing Audio Video Bridging Task Group and continuing its work. The name changed as a result of the extension of the working area of the standardization group. The standards define mechanisms for the time-sensitive transmission of data over deterministic Ethernet networks.

<span class="mw-page-title-main">Audio Video Bridging</span> Specifications for synchronized, low-latency streaming through IEEE 802 networks

Audio Video Bridging (AVB) is a common name for a set of technical standards that provide improved synchronization, low latency, and reliability for switched Ethernet networks. AVB embodies the following technologies and standards:

References

  1. "Deterministic Networking (detnet)". IETF.
  2. Deterministic Networking Problem Statement. doi: 10.17487/RFC8557 . RFC 8557.
  3. Varga, Balazs; Farkas, János; Malis, Anew G.; Bryant, Stewart (June 2021). "Deterministic Networking (DetNet) Data Plane: IP over IEEE 802.1 Time-Sensitive Networking (TSN)".
  4. Deterministic Networking Use Cases. doi: 10.17487/RFC8578 . RFC 8578.