Smart Battery System

Last updated

Smart Battery System (SBS) is a specification for managing a smart battery, usually for a portable computer. It allows operating systems to perform power management operations via a smart battery charger based on remaining estimated run times by determining accurate state of charge readings. Through this communication, the system also controls the battery charge rate. Communication is carried over an SMBus two-wire communication bus. The specification originated with the Duracell and Intel companies in 1994, but was later adopted by several battery and semiconductor makers. [1]

Contents

The Smart Battery System defines the SMBus connection, the data that can be sent over the connection (Smart Battery Data or SBD), the Smart Battery Charger, and a computer BIOS interface for control. In principle, any battery operated product can use SBS.

Texas Instruments BQ20Z45: SBS 1.1-compliant gas gauge and protection enabled with impedance track Asus Zenbook UX31E - Lithium-Polymer battery controller - Texas Instruments BQ20Z45-48173.jpg
Texas Instruments BQ20Z45: SBS 1.1-compliant gas gauge and protection enabled with impedance track

A special integrated circuit in the battery pack (called a fuel gauge or battery management system) monitors the battery and reports information to the SMBus. This information might include battery type, model number, manufacturer, characteristics, charge/discharge rate, predicted remaining capacity, an almost-discharged alarm so that the PC or other device can shut down gracefully, and temperature and voltage to provide safe fast-charging.

See also

Related Research Articles

<span class="mw-page-title-main">USB</span> Standard for computer data connections

Universal Serial Bus (USB) is an industry standard that allows data exchange and delivery of power between many various types of electronics. It specifies its architecture, in particular its physical interface, and communication protocols for data transfer and power delivery to and from hosts, such as personal computers, to and from peripheral devices, e.g. displays, keyboards, and mass storage devices, and to and from intermediate hubs, which multiply the number of a host's ports. USB was originally designed to standardize the connection of peripherals to computers, replacing various interfaces such as serial ports, parallel ports, game ports, and ADB ports, and prior versions of USB became commonplace on a wide range of devices, such as keyboards, mice, cameras, printers, scanners, flash drives, smartphones, game consoles, and power banks. It has evolved into a standard to replace virtually all common ports on computers, mobile devices, peripherals, power supplies, and manifold other small electronics. In the current standard the USB-C connector replaces the many various connectors for power, displays, and many other uses, as well as all previous USB connectors.

<span class="mw-page-title-main">Uninterruptible power supply</span> Electrical device that uses batteries to prevent any interruption of power flow

An uninterruptible power supply (UPS) or uninterruptible power source is a type of continual power system that provides automated backup electric power to a load when the input power source or mains power fails. A UPS differs from a traditional auxiliary/emergency power system or standby generator in that it will provide near-instantaneous protection from input power interruptions by switching to energy stored in battery packs, supercapacitors or flywheels. The on-battery run-times of most UPSs are relatively short but sufficient to "buy time" for initiating a standby power source or properly shutting down the protected equipment. Almost all UPSs also contain integrated surge protection to shield the output appliances from voltage spikes.

<span class="mw-page-title-main">I²C</span> Serial communication bus

I2C (Inter-Integrated Circuit; pronounced as “eye-squared-C”), alternatively known as I2C or IIC, is a synchronous, multi-master/multi-slave (controller/target), single-ended, serial communication bus invented in 1982 by Philips Semiconductors. It is widely used for attaching lower-speed peripheral ICs to processors and microcontrollers in short-distance, intra-board communication.

<span class="mw-page-title-main">KNX</span> Standard in building automation

KNX is an open standard for commercial and residential building automation. KNX devices can manage lighting, blinds and shutters, HVAC, security systems, energy management, audio video, white goods, displays, remote control, etc. KNX evolved from three earlier standards; the European Home Systems Protocol (EHS), BatiBUS, and the European Installation Bus.

<span class="mw-page-title-main">Rechargeable battery</span> Type of electrical battery

A rechargeable battery, storage battery, or secondary cell, is a type of electrical battery which can be charged, discharged into a load, and recharged many times, as opposed to a disposable or primary battery, which is supplied fully charged and discarded after use. It is composed of one or more electrochemical cells. The term "accumulator" is used as it accumulates and stores energy through a reversible electrochemical reaction. Rechargeable batteries are produced in many different shapes and sizes, ranging from button cells to megawatt systems connected to stabilize an electrical distribution network. Several different combinations of electrode materials and electrolytes are used, including lead–acid, zinc–air, nickel–cadmium (NiCd), nickel–metal hydride (NiMH), lithium-ion (Li-ion), lithium iron phosphate (LiFePO4), and lithium-ion polymer.

<span class="mw-page-title-main">Power-line communication</span> Type of network

Power-line communication, abbreviated as PLC, carries data on a conductor that is also used simultaneously for AC electric power transmission or electric power distribution to consumers.

<span class="mw-page-title-main">DC connector</span> Electrical connector for carrying DC power

A DC connector is an electrical connector for supplying direct current (DC) power.

The System Management Bus is a single-ended simple two-wire bus for the purpose of lightweight communication. Most commonly it is found in chipsets of computer motherboards for communication with the power source for ON/OFF instructions. The exact functionality and hardware interfaces vary with vendors.

<span class="mw-page-title-main">Wireless USB</span> Wireless radio communication protocol

Wireless USB (Universal Serial Bus) is a short-range, high-bandwidth wireless radio communication protocol created by the Wireless USB Promoter Group which intended to increase the availability of general USB-based technologies. It is unrelated to Wi-Fi, and different from the Cypress WirelessUSB offerings. It was maintained by the WiMedia Alliance which ceased operations in 2009. Wireless USB is sometimes abbreviated as WUSB, although the USB Implementers Forum discouraged this practice and instead prefers to call the technology Certified Wireless USB to distinguish it from the competing UWB standard.

<span class="mw-page-title-main">Battery pack</span> Set of batteries or battery cells

A battery pack is a set of any number of (preferably) identical batteries or individual battery cells. They may be configured in a series, parallel or a mixture of both to deliver the desired voltage, capacity, or power density. The term battery pack is often used in reference to cordless tools, radio-controlled hobby toys, and battery electric vehicles.

<span class="mw-page-title-main">USB On-The-Go</span> Specification for USB devices

USB On-The-Go is a specification first used in late 2001 that allows USB devices, such as tablets or smartphones, to also act as a host, allowing other USB devices, such as USB flash drives, digital cameras, mouse or keyboards, to be attached to them. Use of USB OTG allows devices to switch back and forth between the roles of host and device. For example, a smartphone may read from removable media as the host device, but present itself as a USB Mass Storage Device when connected to a host computer.

<span class="mw-page-title-main">Battery charger</span> Device used to provide electricity

A battery charger, recharger, or simply charger, is a device that stores energy in a battery by running an electric current through it. The charging protocol depends on the size and type of the battery being charged. Some battery types have high tolerance for overcharging and can be recharged by connection to a constant voltage source or a constant current source, depending on battery type. Simple chargers of this type must be manually disconnected at the end of the charge cycle. Other battery types use a timer to cut off when charging should be complete. Other battery types cannot withstand over-charging, becoming damaged, over heating or even exploding. The charger may have temperature or voltage sensing circuits and a microprocessor controller to safely adjust the charging current and voltage, determine the state of charge, and cut off at the end of charge. Chargers may elevate the output voltage proportionally with current to compensate for impedance in the wires.

<span class="mw-page-title-main">Smart battery</span>

A smart battery or a smart battery pack is a rechargeable battery pack with a built-in battery management system (BMS), usually designed for use in a portable computer such as a laptop. In addition to the usual positive and negative terminals, a smart battery has two or more terminals to connect to the BMS; typically the negative terminal is also used as BMS "ground". BMS interface examples are: SMBus, PMBus, EIA-232, EIA-485, and Local Interconnect Network.

<span class="mw-page-title-main">Charging station</span> Installation for charging electric vehicles

A charging station, also known as a charge point or electric vehicle supply equipment (EVSE), is a power supply device that supplies electrical power for recharging plug-in electric vehicles.

Host Embedded Controller Interface (HECI) is technology introduced in 2006 used for Active Management Technology (AMT) in Intel chipsets that support Core 2 Duo microprocessors.

A battery management system (BMS) is any electronic system that manages a rechargeable battery, such as by protecting the battery from operating outside its safe operating area, monitoring its state, calculating secondary data, reporting that data, controlling its environment, authenticating it and / or balancing it.

<span class="mw-page-title-main">Electric battery</span> Power source with electrochemical cells

A battery is a source of electric power consisting of one or more electrochemical cells with external connections for powering electrical devices. When a battery is supplying power, its positive terminal is the cathode and its negative terminal is the anode. The terminal marked negative is the source of electrons that will flow through an external electric circuit to the positive terminal. When a battery is connected to an external electric load, a redox reaction converts high-energy reactants to lower-energy products, and the free-energy difference is delivered to the external circuit as electrical energy. Historically the term "battery" specifically referred to a device composed of multiple cells; however, the usage has evolved to include devices composed of a single cell.

<span class="mw-page-title-main">EnergyBus</span>

EnergyBus connectors are used for charging electric bicycles and pedelecs within Europe. The connector is circular in shape and specified for charging light electric vehicles at up to 1.5 kilowatts. Electric power is provided at 12–48 volts direct current (DC) so that any battery charger can charge any rechargeable battery.

The initial versions of the USB standard specified connectors that were easy to use and that would have acceptable life spans; revisions of the standard added smaller connectors useful for compact portable devices. Higher-speed development of the USB standard gave rise to another family of connectors to permit additional data paths. All versions of USB specify cable properties; version 3.x cables include additional data paths. The USB standard included power supply to peripheral devices; modern versions of the standard extend the power delivery limits for battery charging and devices requiring up to 240 watts. USB has been selected as the standard charging format for many mobile phones, reducing the proliferation of proprietary chargers.

References

  1. Henk Jan Bergveld, Wanda S. Kruijt, Peter H. L. Notten Battery management systems: design by modelling Springer, 2002 ISBN   1-4020-0832-5 pages 20-22