Floppy disk drive interface

Last updated

Each generation of floppy disk drive (FDD) began with a variety of incompatible interfaces but soon evolved into one de facto standard interface for the generations of 8-inch FDDs, 5.25-inch FDDs and 3.5-inch FDDs. [1] For example, before adopting 3.5-inch FDD standards for interface, media and form factor there were drives and media proposed by Hitachi, Tabor, Sony, Tandon, Shugart and Canon. [2]

Contents

Sizes

8 inch

The de facto standard 8 inch FDD interface is based upon the Shugart Associates models SA800/801 [3] FDDs and models SA850/851 [4] FDDs. [5] :171 The signal interface uses a dual in-line 50-pin PCB edge connector which mates to a flat ribbon cable connector; separate connectors are provided for both AC and DC power. [3] [4]

5.25 inch

Connectors for 5.25 inch or 3.5 inch FDD (Drive "A") at end of universal two drive FDD cable. Note twist in flat cable. Floppy buskabel.jpg
Connectors for 5.25 inch or 3.5 inch FDD (Drive "A") at end of universal two drive FDD cable. Note twist in flat cable.

The de facto standard 5.25 inch FDD interface is based upon the Shugart Associates SA400 [6] FDD. [5] :169 The signal interface uses a dual in-line 34-pin PCB edge connector which mates to a flat ribbon cable connector; a separate connector is for DC power. [6] The 34-pin connector is similar in pinout to the standard 50-pin connector for 8 inch FDDs.

3.5 inch

The de facto standard for 3.5 inch drives uses a dual in-line pin style connector mating to a socket connector, collectively slightly smaller than the PCB edge pin connector and mating socket used for the 5¼ inch standard but with the same 34 pin definitions as the 5¼ inch standard. [7] A 'universal' cable would have four drive connectors, two for each size of FDD, although cables which have only two drive connectors are common. The cable is normally formed into a ribbon, and a twist located between the pairs of connectors for the drives (see image) is usually applied to the conductors for pins 10 to 16 inclusive. This allows two drives connected to the same cable to be addressed by the host controller. Only two drives may be connected to such a cable. If there are four drive connectors at least two must remain unused. A separate connector is provided for DC power. [1]

Signal and control interface

3.5-inch and 5.25-inch drives connect to the floppy controller using a 34-conductor flat ribbon cable for signal and control; a separate cable provides d.c. power. Most controllers support two floppy drives, so a cable could have 5.25-inch style connectors, 3.5-inch style connectors, or a combination. After IBM introduced the "twist" to floppy cables, and when both 5.25-inch and 3.5-inch drives were in common use, many cables had four connectors: one of each type before the twist, and one of each type after the twist. These cables still only supported two drives, one before and one after the twist, but they allowed using one cable for any combination of drives with differing connectors. This type of cable is called a universal cable. [8]

When multiple floppy disks are connected, many pins are shared, including the read and write data pins. As a result, early floppy drives required jumpers to be set on the drive to tell it which controller commands it should receive. When introducing the PC, IBM sliced the cable between the first and second drive, and twisted seven of the conductors, effectively flipping the four conductors which specifically addressed the first or second drive. (The remaining three were ground only, so were not affected by the twist.) As a result, all drives could have their jumpers set to be drive "B", but if they were connected after the twist, they would appear to the controller as drive "A". This eliminated the need to change selection jumpers in the drive, and eventually many floppy drives were manufactured without jumpers at all, instead being hardwired as drive "B". As the IBM PC created a market for clones and compatibles, many manufacturers adopted the same cable twist system, although jumpers may still be required on systems that are older, or not based on the IBM PC. [9]

The drive that is at furthest end of the cable additionally would have a terminating resistor installed to maintain signal quality. [10]

The following explanation of pinout is for reference only.

Floppy drive connector pinout (host controller as a reference)
Pin numberAbbreviationDescriptionNotesType
2DENSELDensity Select 1=Low/0=HighThe default use is 0Output
4RSVDReservedNo connection or connect to the ground
6RSVDReservedNo connection or connect to the ground
8INDEX#Index0=IndexInput
10MOTEA#Motor A Enable0=Motor Enable Drive 0Output
12DRVSBDrive Select BOutput
14DRVSADrive Select AOutput
16MOTEB#Motor B Enable0=Motor Enable Drive 1Output
18DIR#Direction SelectLow Current/Direction in uPD765 controllerOutput
20STEP#Head StepFault Reset/Step in uPD765 controllerOutput
22WDATAWrite DataOutput
24WGATE#Floppy Write Enable0=Write GateOutput
26TRK0#Track 0Fault/Track 0 in uPD765 controllerInput
28WPT#Write Protect0=Write ProtectInput
30RDATARead DataInput
32HDSEL#/SIDEHead Select / Side selectTwo uses, see application or use for details.(Side select:1=Side 0/0=Side 1)Output
34DSKCHG#Disk Change1=Disk Change/0=ReadyInput
3RSVDReservedNo connection or connect to the ground
5N/CNo connectionPins usually do not exist here to prevent the male plug from being inserted in the opposite direction
Odd pins 1 thru 33GNDGroundExcept for the 3rd and 5th pinsPower


"#" indicates that the low electric level is effective (aka "active low").

Motor A,B is also known as Motor 0,1.

Since floppy disks are rarely used nowadays, "MOTEB#" and "DRVSB" pins are not connected in motherboards designed with floppy disk data interfaces, and only one floppy disk drive can be connected.

Floppy drive A/B twist pinout
WireControllerDrive ADrive BDescription
1-91-91-91-9No Change
10101610Motor Enable Drive 0/1
11111511Ground, No Change
12121412Drive Select 0/1
13131313Ground, No Change
14141214Drive Select 0/1
15151115Ground, No Change
16161016Motor Enable Drive 0/1
17-3417-3417-3417-34No Change

See also

Related Research Articles

<span class="mw-page-title-main">Parallel ATA</span> Computer storage interface standard

Parallel ATA (PATA), originally AT Attachment, also known as Integrated Drive Electronics (IDE), is a standard interface designed for IBM PC-compatible computers. It was first developed by Western Digital and Compaq in 1986 for compatible hard drives and CD or DVD drives. The connection is used for storage devices such as hard disk drives, floppy disk drives, optical disc drives, and tape drives in computers.

<span class="mw-page-title-main">Floppy disk</span> Removable disk storage medium

A floppy disk or floppy diskette is a type of disk storage composed of a thin and flexible disk of a magnetic storage medium in a square or nearly square plastic enclosure lined with a fabric that removes dust particles from the spinning disk. The three most popular floppy disks are the 8-inch, 5¼-inch, and 3½-inch floppy disks. Floppy disks store digital data which can be read and written when the disk is inserted into a floppy disk drive (FDD) connected to or inside a computer or other device.

<span class="mw-page-title-main">Industry Standard Architecture</span> Internal expansion bus in early PC compatibles

Industry Standard Architecture (ISA) is the 16-bit internal bus of IBM PC/AT and similar computers based on the Intel 80286 and its immediate successors during the 1980s. The bus was (largely) backward compatible with the 8-bit bus of the 8088-based IBM PC, including the IBM PC/XT as well as IBM PC compatibles.

<span class="mw-page-title-main">SCSI</span> Set of computer and peripheral connection standards

Small Computer System Interface is a set of standards for physically connecting and transferring data between computers and peripheral devices, best known for its use with storage devices such as hard disk drives. SCSI was introduced in the 1980s and has seen widespread use on servers and high-end workstations, with new SCSI standards being published as recently as SAS-4 in 2017.

<span class="mw-page-title-main">Tandy 1000</span> IBM PC compatible home computer system

The Tandy 1000 was the first in a series of IBM PC compatible home computers produced by the Tandy Corporation, sold through its Radio Shack and Radio Shack Computer Center stores. Introduced in 1984, the Tandy 1000 line was designed to offer affordable yet capable systems for home computing and education. Tandy-specific features, such as enhanced graphics, sound, and a built-in joystick port, made the computers particularly attractive for home use.

<span class="mw-page-title-main">ST506/ST412</span> Hard disk drive

The ST-506 and ST-412 were early hard disk drive products introduced by Seagate in 1980 and 1981 respectively, that later became construed as hard disk drive interfaces: the ST-506 disk interface and the ST-412 disk interface. Compared to the ST-506 precursor, the ST-412 implemented a refinement to the seek speed, and increased the drive capacity from 5 MB to 10 MB, but was otherwise highly similar.

<span class="mw-page-title-main">SATA</span> Computer bus interface for storage devices

SATA is a computer bus interface that connects host bus adapters to mass storage devices such as hard disk drives, optical drives, and solid-state drives. Serial ATA succeeded the earlier Parallel ATA (PATA) standard to become the predominant interface for storage devices.

<span class="mw-page-title-main">Shugart Associates</span> American computer peripheral manufacturer

Shugart Associates was a computer peripheral manufacturer that dominated the floppy disk drive market in the late 1970s and is famous for introducing the 5+14-inch "Minifloppy" floppy disk drive. In 1979 it was one of the first companies to introduce a hard disk drive form factor compatible with a floppy disk drive, the SA1000 form factor compatible with the 8-inch floppy drive form factor.

<span class="mw-page-title-main">IBM Personal Computer AT</span> IBM personal computer released in 1984

The IBM Personal Computer AT was released in 1984 as the fourth model in the IBM Personal Computer line, following the IBM PC/XT and its IBM Portable PC variant. It was designed around the Intel 80286 microprocessor.

<span class="mw-page-title-main">D-subminiature</span> Type of electrical connector

The D-subminiature or D-sub is a common type of electrical connector. They are named for their characteristic D-shaped metal shield. When they were introduced, D-subs were among the smallest connectors used on computer systems.

<span class="mw-page-title-main">Floppy-disk controller</span> Circuitry that controls reading from and writing to a computers floppy disk drive

A floppy-disk controller (FDC) is a hardware component that directs and controls reading from and writing to a computer's floppy disk drive (FDD). It has evolved from a discrete set of components on one or more circuit boards to a special-purpose integrated circuit or a component thereof. An FDC is responsible for reading data presented from the host computer and converting it to the drive's on-disk format using one of a number of encoding schemes, like FM encoding or MFM encoding, and reading those formats and returning it to its original binary values.

<span class="mw-page-title-main">IDC (electrical connector)</span> Type of electrical connector

An insulation-displacement contact (IDC), also known as insulation-piercing contact (IPC), is an electrical connector designed to be connected to the conductor(s) of an insulated cable by a connection process which forces a selectively sharpened blade or blades through the insulation, bypassing the need to strip the conductors of insulation before connecting. When properly made, the connector blade cold-welds to the conductor, making a theoretically reliable gas-tight connection.

<span class="mw-page-title-main">Disk II</span> Floppy disk drive for the Apple II computer

The Disk II Floppy Disk Subsystem, often rendered as Disk ][, is a 5 +14-inch floppy disk drive designed by Steve Wozniak at the recommendation of Mike Markkula, and manufactured by Apple Computer It went on sale in June 1978 at a retail price of US$495 for pre-order; it was later sold for $595 including the controller card and cable. The Disk II was designed specifically for use with the 1977 Apple II personal computer to replace the slower cassette tape storage.

<span class="mw-page-title-main">Apple FileWare</span> Floppy drive by Apple

FileWare floppy disk drives and diskettes were designed by Apple Computer as a higher-performance alternative to the Disk II and Disk III floppy systems used on the Apple II and Apple III personal computers. The drive is named Apple 871 in service documentation, based on its approximate formatted storage capacity in kilobytes, but is most commonly known by their codename Twiggy, after the famously thin 1960s fashion model named Twiggy.

<span class="mw-page-title-main">History of the floppy disk</span>

A floppy disk is a disk storage medium composed of a thin and flexible magnetic storage medium encased in a rectangular plastic carrier. It is read and written using a floppy disk drive (FDD). Floppy disks were an almost universal data format from the 1970s into the 1990s, used for primary data storage as well as for backup and data transfers between computers.

The original IBM Personal Computer and IBM PCjr included support for storing data and programs on compact cassette tape.

<span class="mw-page-title-main">Floppy disk variants</span> Types of floppy disk formats

The floppy disk is a data storage and transfer medium that was ubiquitous from the mid-1970s well into the 2000s. Besides the 3½-inch and 5¼-inch formats used in IBM PC compatible systems, or the 8-inch format that preceded them, many proprietary floppy disk formats were developed, either using a different disk design or special layout and encoding methods for the data held on the disk.

<span class="mw-page-title-main">IBM Personal Computer XT</span> Personal computer model released in 1983

The IBM Personal Computer XT is the second computer in the IBM Personal Computer line, released on March 8, 1983. Except for the addition of a built-in hard drive and extra expansion slots, it is very similar to the original IBM PC model 5150 from 1981.

Hard disk drives are accessed over one of a number of bus types, including parallel ATA, Serial ATA (SATA), SCSI, Serial Attached SCSI (SAS), and Fibre Channel. Bridge circuitry is sometimes used to connect hard disk drives to buses with which they cannot communicate natively, such as IEEE 1394, USB, SCSI, NVMe and Thunderbolt.

References

  1. 1 2 Mueller, Scott (2006-03-24). "Floppy Disk Drives, Past and Present". Upgrading and Repairing PCs (17 ed.). Que Publishing. ISBN   0-7897-3404-4. ISBN   978-0-7897-3404-4 EAN   2147483647. Archived from the original on 2022-01-08. Retrieved 2022-01-01. […] all PC floppy disk drives are still based on (and mostly compatible with) the original Shugart designs, including the electrical and command interfaces. […] The standard interface that all PC floppy disk drives use is called the Shugart Associates SA400 interface. It was invented in the 1970s and is based on the NEC 765 controller chip.{{cite book}}: |website= ignored (help)
  2. Abraham, Robert (January 1983). "Microfloppy Drives Achieve High Densities and Faster Data Access". Computer Technology Review. p. 239.
  3. 1 2 SA800/801 Diskette Storage Drive (PDF). OEM Manual. Sunnyvale, California, USA: Shugart. May 1980. P/N 50574-4. Archived (PDF) from the original on 2021-03-09. Retrieved 2022-01-02. (1+iv+40+1 pages)
  4. 1 2 "SA850/851 Bi-Compliant Double Sided Diskette Storage Drive" (PDF). OEM Manual. Sunnyvale, California, USA: Shugart. November 1980. P/N 39017-0. Archived (PDF) from the original on 2020-11-29. Retrieved 2022-01-02. (1+iv+50+1 pages)
  5. 1 2 Porter, James (February 1982). "Floppy-disk drives: a truly flexible industry standard". Mini-Micro Systems . Cahners Publishing Company. pp. 169, 171. pp. 169, 171: […] SA400, Industry standard for size and interface […] SA800, SA801, SA850, SA851, Industry standard for size and interface […]
  6. 1 2 SA400L Minifloppy Diskette Storage Drive (PDF). OEM Manual. Sunnyvale, California, USA: Shugart. November 1982 [1981]. P/N 39019-1. Archived (PDF) from the original on 2020-07-27. Retrieved 2022-01-02. (2+iv+29+1 pages)
  7. Davis, Larry (2015-06-13). "Floppy Disk Drive Pinout". www.interbus.com. Archived from the original on 2022-01-07. Retrieved 2022-01-06.
  8. Davis, Larry (2015-06-13). "Floppy Drive Pinout, Signal names, Pin out Description and Cable twist wiring". www.interfacebus.com. Retrieved 2019-01-29.
  9. Farquhar, David "Dave" L. (2021-11-24). "Floppy drive pinout". The Silicon Underground. Archived from the original on 2022-01-08. Retrieved 2022-01-04. The pinouts for all these drives are all based on the original Shugart floppy drive [… of the SA800 Series], but many manufacturers changed them slightly to suit their own purposes.
  10. Scott Mueller, Upgrading and Repairing PCs, Second Edition, Que, 1992, ISBN   0-88022-856-3,page 487

Further reading