Floppy-disk controller

Last updated

FDC board from an IBM 5150. The NEC D765AC FDC IC is the large dual in-line package at the top. IBM PC Original 5.25 Diskette Drive Adapter.jpg
FDC board from an IBM 5150. The NEC D765AC FDC IC is the large dual in-line package at the top.

A floppy-disk controller (FDC) is a hardware component that directs and controls reading from and writing to a computer's floppy disk drive (FDD). It has evolved from a discrete set of components on one or more circuit boards to a special-purpose integrated circuit (IC or "chip") or a component thereof. An FDC is responsible for reading data presented from the host computer and converting it to the drive's on-disk format using one of a number of encoding schemes, like FM encoding (single density) or MFM encoding (double density), and reading those formats and returning it to its original binary values.

Contents

Depending on the platform, data transfers between the controller and host computer would be controlled by the computer's own microprocessor, or an inexpensive dedicated microprocessor like the MOS 6507 or Zilog Z80. Early controllers required additional circuitry to perform specific tasks like providing clock signals and setting various options. Later designs included more of this functionality on the controller and reduced the complexity of the external circuitry; single-chip solutions were common by the later 1980s.

By the 1990s, the floppy disk was increasingly giving way to hard drives, which required similar controllers. In these systems, the controller also often combined a microcontroller to handle data transfer over standardized connectors like SCSI and IDE that could be used with any computer. In more modern systems, the FDC, if present at all, is typically part of the many functions provided by a single super I/O chip.

History

The first floppy disk drive controller (FDC) like the first floppy disk drive (the IBM 23FD) shipped in 1971 as a component in the IBM 2385 Storage Control Unit for the IBM 2305 fixed head disk drive, [1] and of the System 370 Models 155 and 165. The IBM 3830 Storage Control Unit, a contemporaneous and quite similar controller, uses its internal processor to control a 23FD. [2] The resultant FDC is a simple implementation in IBMs’ MST hybrid circuits on a few printed circuit cards. [2] The drive, FDC and media were proprietary to IBM and although other manufacturers provided early FDDs prior to 1973 there were no standards for FDCs, drives or media.

IBM's 1973 introduction of the 3740 Data Entry System created the basic media standard for the 8-inch single sided floppy disk, IBM's "Type 1" diskette, which coupled with rapidly increasing requirements for inexpensive, removable direct access storage for many small applications caused a dramatic growth in drive and controller shipments. [3]

Prior to the introduction of special purpose integrated circuit versions, most FDCs consisted of at least one printed circuit implemented with 40 or more ICs. [4] Examples of such FDCs include:

The first FDC implemented as a special purpose integrated circuit is the Western Digital FD1771 [14] announced on July 19, 1976. [15] The initial design supported a single format and required additional circuitry but over time, as a family, the design became multi-sourced and evolved to support many formats and minimize external circuitry.

The NEC µPD765 was announced in 1978 [16] and in 1979 NEC introduced the μPD72068, which was software compatible with the μPD765, incroporating a Digital PLL. [17] The µPD765 became a quasi-industry standard when it was adopted in the original IBM PC (1981); the FDC was physically located on its own adapter card along with support circuitry. Other vendors such as Intel produced compatible parts. This design evolved over time into a family offering an almost complete FDC on a chip. [18]

As of March 1986, Sharp had commercialized the FDC LH0110. [19]

In early 1987, Intel introduced the 82072 CHMOS High Integrated Floppy Disk Controller for use in industry standard PC computers. [20] [21]

Ultimately in most computer systems the FDC became a part of a Super I/O chip or a Southbridge chip. [18] [22] [23]

Overview

A floppy disk stores binary data not as a series of values, but a series of changes in value. Each of these changes, recorded in the polarity of the magnetic recording media, causes a voltage to be induced in the drive head as the disk surface rotates past it. It is the timing of these polarization changes and the resulting spikes of voltage that encode the ones and zeros of the original data. One of the functions of the controller is to turn the original data into the proper pattern of polarizations during writing, and then recreate it during reads.

As the storage is based on timing, and that timing is easily affected by mechanical and electrical disturbances, accurately reading the data requires some sort of reference signal, the clock. As the on-disk timing is constantly changing, the clock signal has to be provided by the disk itself. To do this, the original data is modified with extra transitions to allow the clock signal to be encoded in the data and then use clock recovery during reads to recreate the original signal. Some controllers require this encoding to be performed externally, but most designs provide standard encodings like FM and MFM.

The controller also provides a number of other services to control the drive mechanism itself. These typically include the movement of the drive head to center over the separate tracks on the disk, tracking the location of the head and returning it to zero, and sometimes functionally to format a disk based on simple inputs like the number of tracks, sectors per track and number of bytes per sector.

To produce a complete system, the controller has to be combined with additional circuitry or software that acts as a bridge between the controller and the host system. In some systems, like the Apple II and IBM PC, this is controlled by software running on the computer's host microprocessor and the drive interface is connected directly to the processor using an expansion card. On other systems, like the Commodore 64 and Atari 8-bit family, there is no direct path from the controller to the host CPU and a second processor like the MOS 6507 or Zilog Z80 is used inside the drive for this purpose.

The original Apple II controller was in the form of a plug-in card on the host computer. It could support two drives, and the drives eliminated most of the normal onboard circuitry. This allowed Apple to arrange a deal with Shugart Associates for a simplified drive that lacked most of its normal circuitry. [4] This meant that the combined cost of a single drive and controller card was roughly the same as on other systems, but a second drive could be connected for a smaller additional cost.[ citation needed ]

The IBM PC took a more conventional approach, their adaptor card could support up to four drives; on the PC direct memory access (DMA) to the drives was performed using DMA channel 2 and IRQ 6. The diagram below shows a conventional floppy disk controller which communicates with the CPU via an Industry Standard Architecture (ISA) bus or similar bus and communicates with the floppy disk drive with a 34 pin ribbon cable. An alternative arrangement that is more usual in recent designs has the FDC included in a super I/O chip which communicates via a Low Pin Count (LPC) bus.

Block diagram showing FDC communication with the CPU and the FDD. Fdcinpc.jpg
Block diagram showing FDC communication with the CPU and the FDD.

Most of the floppy disk controller (FDC) functions are performed by the integrated circuit but some are performed by external hardware circuits. The list of functions performed by each is given below.

Floppy disk controller functions (FDC)

External hardware functions

Input/output ports for common x86-PC controller

The FDC has three I/O ports. These are:

The first two reside inside the FDC IC while the Control port is in the external hardware. The addresses of these three ports are as follows.

Port Address
[hex]
Port NameLocationPort type
3F5Data portBidirectional I/O
3F4Main status registerFDC ICInput
3F2Digital control portExternal hardwareOutput

Data port

This port is used by the software for three different purposes:

Main status register (MSR)

This port is used by the software to read the overall status information regarding the FDC IC and the FDD's. Before initiating a floppy disk operation the software reads this port to confirm the readiness condition of the FDC and the disk drives to verify the status of the previously initiated command. The different bits of this register represent :

BitRepresentation
0FDD 0: Busy in seek mode
1FDD 1: Busy in seek mode
2FDD 2: Busy in seek mode
3FDD 3: Busy in seek mode
4FDC Busy; Read/Write command in progress
5Non-DMA mode
6DIO; Indicates the direction of data transfer between the FDC IC and the CPU
7MQR; Indicates data register is ready for data transfer
Explanations
MQR1 = data register ready, 0 = data register not ready
DIO1 = controller has data for CPU, 0 = controller expecting data from CPU
Non-DMA1 = Controller Not in DMA Mode, 0 = Controller in DMA Mode
FDC Busy1 = Busy, 0 = Not Busy
FDD 0,1,2,31 = Running, 0 = Not Running

 

Digital control port

This port is used by the software to control certain FDD and FDC IC functions. The bit assignments of this port are:

BitRepresentation
0 and 1Device number to be selected
2RESET FDC IC (Low)
3Enable FDC interrupt and DMA request signals
4 to 7Turn ON the motor in disk drive 0, 1, 2 or 3 respectively

Interface to the floppy disk drive

A controller connects to one or more drives using a flat ribbon cable, 50 wires for 8" drives and 34 wires for 3.5" & 5.25" drives. A "universal cable" has four drive connectors, two each for 3.5" & 5.25" drives. [24] In the IBM PC family and compatibles, a twist in the cable is used to distinguish disk drives by the socket to which they are connected. All drives are installed with the same drive select address set, and the twist in the cable interchanges the drive select lines at the socket. The drive that is at the far end of the cable would also have a terminating resistor installed to maintain signal quality. [25]

More detailed descriptions of the interface signals including alternative meanings are contained in manufacturer's specifications for drives or host controllers.

When the controller and disk drive are assembled as one device, as it is the case with some external floppy disk drives, e.g., Commodore 1540 and USB floppy disk drives, [26] the internal floppy disk drive and its interface are unchanged, while the assembled device presents a different interface such as IEEE-488, parallel port or USB.

Format data

Many mutually incompatible floppy disk formats are possible; aside from the physical format on the disk, incompatible file systems are also possible.

DriveFormatCapacityTransfer
speed
[ kbit/s ]
RPM Tracks TPI Comment
8-inch SD8-inch SD80 KB33.3333603248Only on old controllers. [27]
5.25-inch SD5.25-inch SD160 KB12540Only on old controllers.
5.25-inch SSDD5.25-inch SSDD171 KB250–3083003548 [28] Only on C1541 compatibles.
5.25-inch SD5.25-inch SD180 KB15040Only on old controllers.
5.25-inch DD5.25-inch DD320/360/400 KB2503004048 [29] 8/9/10 512 byte sectors respectively.
5.25-inch DD (96 tpi)5.25-inch QD (2DD)800 KB2503008096 [30]
5.25-inch HD5.25-inch DD360 KB3003604048 [31] [32]
5.25" HD5.25" HD1200 KB5003608096Up to 83 tracks. Different biasing current. [31] [32]
5.25" HD5.25" HD720 KB30036080Up to 83 tracks. [29]
3.5" DD3.5" DD720 KB25030080135Up to 83 tracks. [29] [33]
3.5" DD3.5" DD800 KB394–59080Used by Apple Macintosh. [34]
3.5" DD3.5" DD800 KB25030080Used by Commodore 1581.
3.5" DD3.5" DD880 KB25030080Up to 83 tracks. Used by Amiga computers.
3.5" DD3.5" DD360 KB25030040 [29]
3.5" HD3.5" DD720 KB25030080Up to 83 tracks. [29]
3.5" HD3.5" HD1280 KB50036080135Up to 83 tracks. "3mode"
3.5" HD3.5" HD1440 KB50030080135Up to 83 tracks. [29] [35]
3.5" HD3.5" HD1760 KB25015080Used by Amiga computers.
3.5" ED3.5" ED2880 KB100030080135Up to 83 tracks. [33] [36]

[37]

Sides:

Density:

3-mode floppy drive

A setup disk of Japanese Microsoft Office 4.3, provided with 3.5" 1.2 MB and 1440 KB formats. MS Office 4.3 Pro Japanese 1.44 MB floppy disk.jpg
A setup disk of Japanese Microsoft Office 4.3, provided with 3.5" 1.2 MB and 1440 KB formats.

Primarily in Japan there are 3.5" high-density floppy drives that support three modes of disk formats instead of the normal two – 1440 KB (2 MB unformatted), 1.2 MB (1.6 MB unformatted) and 720 KB (1 MB unformatted). Originally, the high-density modes for 3.5" floppy drives in Japan only supported a capacity of 1.2 MB instead of the 1440 KB capacity that was used elsewhere. [38] While the more common 1440 KB format spun at 300 rpm, the 1.2 MB formats instead spun at 360 rpm, thereby closely resembling the geometries of ether the 1.2 MB format with 80 tracks, 15 sectors per track, and 512 bytes per sector previously found on 5.25" high-density floppy disks or the 1.2 MB format with 77 tracks, 8 sectors per track, and 1,024 bytes per sector previously found on 8" double-density floppy disks. Later Japanese floppy drives incorporated support for both high-density formats (as well as the double-density format), hence the name 3-mode. Some BIOSes have a configuration setting to enable this mode for floppy drives supporting it. [39]

See also

Related Research Articles

<span class="mw-page-title-main">Disk storage</span> General category of storage mechanisms

Disk storage is a general category of storage mechanisms where data is recorded by various electronic, magnetic, optical, or mechanical changes to a surface layer of one or more rotating disks. A disk drive is a device implementing such a storage mechanism. Notable types are today's hard disk drives (HDD) containing one or more non-removable rigid platters, the floppy disk drive (FDD) and its removable floppy disk, and various optical disc drives (ODD) and associated optical disc media.

<span class="mw-page-title-main">Floppy disk</span> Removable disk storage medium

A floppy disk or floppy diskette is a type of disk storage composed of a thin and flexible disk of a magnetic storage medium in a square or nearly square plastic enclosure lined with a fabric that removes dust particles from the spinning disk. Floppy disks store digital data which can be read and written when the disk is inserted into a floppy disk drive (FDD) connected to or inside a computer or other device.

<span class="mw-page-title-main">Intel 8086</span> 16-bit microprocessor

The 8086 is a 16-bit microprocessor chip designed by Intel between early 1976 and June 8, 1978, when it was released. The Intel 8088, released July 1, 1979, is a slightly modified chip with an external 8-bit data bus, and is notable as the processor used in the original IBM PC design.

<span class="mw-page-title-main">Motherboard</span> Main printed circuit board (PCB) for a computing device

A motherboard is the main printed circuit board (PCB) in general-purpose computers and other expandable systems. It holds and allows communication between many of the crucial electronic components of a system, such as the central processing unit (CPU) and memory, and provides connectors for other peripherals. Unlike a backplane, a motherboard usually contains significant sub-systems, such as the central processor, the chipset's input/output and memory controllers, interface connectors, and other components integrated for general use.

<span class="mw-page-title-main">Intel 8085</span> 8-bit microprocessor by Intel

The Intel 8085 ("eighty-eighty-five") is an 8-bit microprocessor produced by Intel and introduced in March 1976. It is the last 8-bit microprocessor developed by Intel.

<span class="mw-page-title-main">ST506/ST412</span>

The ST-506 and ST-412 were early hard disk drive products introduced by Seagate in 1980 and 1981 respectively, that later became construed as hard disk drive interfaces: the ST-506 disk interface and the ST-412 disk interface. Compared to the ST-506 precursor, the ST-412 implemented a refinement to the seek speed, and increased the drive capacity from 5 MB to 10 MB, but was otherwise highly similar.

In computer science, group coded recording or group code recording (GCR) refers to several distinct but related encoding methods for representing data on magnetic media. The first, used in 6250 bpi magnetic tape since 1973, is an error-correcting code combined with a run-length limited (RLL) encoding scheme, belonging into the group of modulation codes. The others are different mainframe hard disk as well as floppy disk encoding methods used in some microcomputers until the late 1980s. GCR is a modified form of a NRZI code, but necessarily with a higher transition density.

Modified frequency modulation (MFM) is a run-length limited (RLL) line code used to encode data on most floppy disks and some hard disk drives. It was first introduced on hard disks in 1970 with the IBM 3330 and then in floppy disk drives beginning with the IBM 53FD in 1976.

Each generation of floppy disk drive (FDD) began with a variety of incompatible interfaces but soon evolved into one de facto standard interface for the generations of 8-inch FDDs, 5.25-inch FDDs and 3.5-inch FDDs. For example, before adopting 3.5-inch FDD standards for interface, media and form factor there were drives and media proposed by Hitachi, Tabor, Sony, Tandon, Shugart and Canon.

Micropolis Corporation was a disk drive company located in Chatsworth, California and founded in 1976. Micropolis initially manufactured high capacity hard-sectored 5.25-inch floppy drives and controllers, later manufacturing hard drives using SCSI and ESDI interfaces.

<span class="mw-page-title-main">Western Digital FD1771</span> Floppy disk controller

The FD1771, sometimes WD1771, is a floppy disk controller chip produced by Western Digital. It is the first in a line of floppy disk controllers that Western Digital produced. It uses single density FM encoding introduced in the IBM 3740. Later models in the series added support for MFM encoding and increasingly added onboard circuitry that formerly had to be implemented in external components. Originally packaged as 40-pin dual in-line package (DIP) format, later models moved to a 28-pin format that further lowered implementation costs.

<span class="mw-page-title-main">Disk II</span> Floppy disk drive for the Apple II computer

The Disk II Floppy Disk Subsystem, often rendered as Disk ][, is a 5 +14-inch floppy disk drive designed by Steve Wozniak at the recommendation of Mike Markkula, and manufactured by Apple Computer, Inc. It went on sale in June 1978 at a retail price of US$495 for pre-order; it was later sold for $595 including the controller card and cable. The Disk II was designed specifically for use with the Apple II personal computer family to replace the slower cassette tape storage. These floppy drives cannot be used with any Macintosh without an Apple IIe Card as doing so will damage the drive or the controller.

<span class="mw-page-title-main">Apple FileWare</span> Floppy drive by Apple

FileWare floppy disk drives and diskettes were designed by Apple Computer as a higher-performance alternative to the Disk II and Disk III floppy systems used on the Apple II and Apple III personal computers. The drive is named Apple 871 in service documentation, based on its approximate formatted storage capacity in kilobytes, but is most commonly known by their codename Twiggy, after the famously thin 1960s fashion model named Twiggy.

George Morrow was part of the early microcomputer industry in the United States. Morrow promoted and improved the S-100 bus used in many early microcomputers. Called "one of the microcomputer industry's iconoclasts" by Richard Dalton in the Whole Earth Software Catalog, Morrow ran his own computer business, Thinker Toys, Inc., later Morrow Designs. He was also a member of the Homebrew Computer Club.

<span class="mw-page-title-main">Dick Smith Super-80 Computer</span>

The Dick Smith Super-80 was a Zilog Z80 based kit computer developed as a joint venture between Electronics Australia magazine and Dick Smith Electronics.

<span class="mw-page-title-main">History of the floppy disk</span>

A floppy disk is a disk storage medium composed of a thin and flexible magnetic storage medium encased in a rectangular plastic carrier. It is read and written using a floppy disk drive (FDD). Floppy disks were an almost universal data format from the 1970s into the 1990s, used for primary data storage as well as for backup and data transfers between computers.

<span class="mw-page-title-main">Single-board microcontroller</span> Microcontroller built onto a single printed circuit board

A single-board microcontroller is a microcontroller built onto a single printed circuit board. This board provides all of the circuitry necessary for a useful control task: a microprocessor, I/O circuits, a clock generator, RAM, stored program memory and any necessary support ICs. The intention is that the board is immediately useful to an application developer, without requiring them to spend time and effort to develop controller hardware.

This glossary of computer hardware terms is a list of definitions of terms and concepts related to computer hardware, i.e. the physical and structural components of computers, architectural issues, and peripheral devices.

<span class="mw-page-title-main">P8000</span> Microcomputer system

The P8000 is a microcomputer system developed in 1987 by the VEB Elektro-Apparate-Werke Berlin-Treptow „Friedrich Ebert“ (EAW) in the German Democratic Republic. It consisted of an 8-bit and a 16-bit microprocessor and a Winchester disk controller. It was intended as a universal programming and development system for multi-user/multi-task applications. The initial list price of the P8000 was 172,125 East German marks.

<span class="mw-page-title-main">Frequency modulation encoding</span> Encoding method used on early floppy and hard disk drives

Frequency modulation encoding, or simply FM, is a method of storing data that saw widespread use in early floppy disk drives and hard disk drives. The data is modified using differential Manchester encoding when written to allow clock recovery to address timing effects known as "jitter" seen on disk media. It was introduced on IBM mainframe drives and was almost universal among early minicomputer and microcomputer floppies. In the case of floppies, FM encoding allowed about 80 kB of data to be stored on a 5+14-inch disk.

References

  1. "IBM 2835 Storage Control and IBM 2305 Fixed Head Storage Module Reference Manual" (PDF). October 1983. Retrieved 2022-07-22. The control unit contains a miniature direct access device which provides read-only storage for control logic backup and storage of nonresident microdiagnostics. The recording medium is an inexpensive Mylar-coated disk cartridge.
  2. 1 2 "IBM Maintenance Library - Storage Control, Model 2, Volume 2" (PDF). 1973-06-04. pp. MPL 25A, MPL 200, MPL 245, MPL 260. Retrieved 2022-07-29. Hardware has already added 64 words (Track 0, Sector 0) and this microprogram will load the remainder of control storage.
  3. Porter, James N. (August 1977). 1977 DISK/TREND REPORT - FLEXIBLE DISK DRIVES (Report). p. 26.
  4. 1 2 3 Gregg, Williams; Moore, Rob, eds. (1984). "THE APPLE STORY, PART 2, An interview with Steve Wozniak". Byte. Retrieved 2022-08-06. At the time, all the existing floppy-disk controllers were 40 or 50 chips …
  5. 3741 Data Station, Theory-Maintenance. IBM. 1974-05-15. pp. 14-2.14-15 (488/599). Retrieved 2022-08-09.
  6. "First floppy disc peripheral made for microcomputers". Electronic Design. 1974-09-27. p. 138. Retrieved 2022-08-11.
  7. "CF 360 FLOPPY DISK CONTROLLER" (PDF). iCOM Microperipherals. Retrieved 2022-08-19. the controller is fully IBM 3740 and 3540 compatible with all formatting and deformatting accomplished automatically within the controller.
  8. SCHEMATIC AND LOGIC DIAGRAMS MODEL FD360 (PDF) (Report). iCOM Microperipherals. March 1976. pp. 8, 34. Retrieved 2022-08-11.
  9. "Discs". INTERFACE AGE. November 1976. pp. 65–66. Retrieved 2022-07-24.
  10. "FD0300 FLOPPY DISK CONTROLLER" (PDF). 1976. Retrieved 2022-07-24. A General Purpose Host Interface is also provided for easy interface to host systems such as minicomputer, microprocessor I/O busses, CRT terminals, instruments, TTL/MSI microprocessors, industrial controllers and other byte oriented systems.
  11. "State of the Art Disk Technology" (PDF). Byte. December 1976. Retrieved 2022-09-01.
  12. "SA4400 ministreaker FloppyDisk Drive Controller" (PDF). 1977. Retrieved 2022-09-01.
  13. Craig, David T (April 1978). "Apple II Computer Family Information, Schematic: Disk 2 Interface Card" (PDF). Retrieved 2022-08-06.
  14. Joe, Jaworski (1985). "Floppy Disk Controllers". 1985 Controller Concepts - Volume 1 (PDF) (Technical report). p. SEMI-1 (67/160). Retrieved 2022-09-09. Pioneering this field was Western Digital Corporation who, in 1976, began sampling the first LSI floppy disk controller, the FD1771.
  15. "Recent IC Announcements". Computer. IEEE. 1976. Retrieved 2022-08-06.
  16. "µPD765 SINGLE/DOUBLE DENSITY FLOPPY DISK CONTROLLER" (PDF). NEC. December 1978. Retrieved 2022-09-09.
  17. "NEC Electronics Inc. μPD72068 Floppy-Disk Controller" (PDF). Retrieved 2024-01-24.
  18. 1 2 Necasek, Michal (2011-05-26). "The floppy controller evolution" . Retrieved 2022-09-02.
  19. "Sharp 1986 Semiconductor Data Book" (PDF). p. 279–295. Retrieved 2024-01-14.
  20. Intel Corporation, "New Product Focus Components: Single-Chip Disk Controller Squeeze More Into Less", Solutions, January/February 1987, page 14
  21. Kearns, Patrick, Begur, Sridhar, and Fischer, Steve, "High Integration/High Performance Floppy Disk Controller Subsystem With The 82072", Intel Corporation, Microcomputer Solutions, November/December 1987, page 20
  22. Mueller, Scott (2005). "Motherboard Components". Scott Muellers Upgrading and Repairing Laptops, Second Edition. Retrieved 2022-09-05.
  23. "FDC37C78 Floppy Disk Controller" (PDF). SMSC. 2007. Archived from the original (PDF) on 2007-12-13. Retrieved 2022-09-09. Licensed CMOS 765B Floppy Disk Controller
  24. Davis, Larry (2015-06-13). "Floppy Drive Pinout, Signal names, Pin out Description and Cable twist wiring". www.interfacebus.com. Retrieved 2019-01-29.
  25. Scott Mueller, Upgrading and Repairing PCs, Second Edition, Que, 1992, ISBN   0-88022-856-3, page 487
  26. Fisher, Tim (2022-01-18). "What Is a Floppy Disk Drive?" . Retrieved 2022-09-20.
  27. Ableman, Genna (2005). Elert, Glenn (ed.). "Angular speed of a floppy disk". The Physics Factbook. Retrieved 2022-01-25.
  28. "C 64 Workshop / C= 8 Bit & Peripherals". 1998-05-19. Retrieved 2016-04-18.
  29. 1 2 3 4 5 6 "unifr.ch – sys/src/kernel/floppy.c". Archived from the original on 19 July 2011. Retrieved 5 May 2011.
  30. "Product specification TM100-4 flexible disk drive 96, tpi" (PDF). Retrieved 2022-01-08.
  31. 1 2 iesleonardo.info – This diskette tutorial provides technical information concerning diskettes
  32. 1 2 oldskool.org – Let HD 5,25" FDDs operate at 300 rpm instead of 360 rpm
  33. 1 2 intel.com – Intel 82077SL for Super Dense Floppies Archived 8 October 2012 at the Wayback Machine
  34. Johnson, Herbert R. (2016-12-22). "Floppy Drive Tech Info" . Retrieved 2017-01-14.
  35. yi.org – High Density Floppy Disks Mf2hd Disk 3 5 1 Pk [ permanent dead link ]
  36. mcamafia.de – IBM Personal system/2, 3,5"-inch Diskette Drives, Technical Reference
  37. "Linux-2.6.17/drivers/block/floppy.c". Archived from the original on 2008-08-23. 090504 gelato.unsw.edu.au
  38. books.google.com – Fix Your Own PC by Corey Sandler
  39. rojakpot.com – 3mode floppy support

Further reading