Ad hoc On-Demand Distance Vector Routing

Last updated
Ad hoc On-Demand Distance Vector Routing
Communication protocol
AbbreviationAODV
PurposeUnicast Routing protocol for mobile-node wireless networks
Developer(s)Charles Perkins & Elizabeth Belding
Introduction1999;24 years ago (1999)
RFC(s) RFC 3561

Ad hoc On-Demand Distance Vector (AODV) Routing is a routing protocol for mobile ad hoc networks (MANETs) and other wireless ad hoc networks. It was jointly developed by Charles Perkins (Sun Microsystems) and Elizabeth Royer (now Elizabeth Belding) (University of California, Santa Barbara) and was first published in the ACM 2nd IEEE Workshop on Mobile Computing Systems and Applications in February 1999. [1]

Contents

AODV is the routing protocol used in Zigbee – a low power, low data rate wireless ad hoc network. There are various implementations of AODV such as MAD-HOC, Kernel-AODV, AODV-UU, AODV-UCSB and AODV-UIUC. [2]

The original publication of AODV won the SIGMOBILE Test of Time Award in 2018. [3] According to Google Scholar, this publication reached 30,000 citations at the end of 2022. AODV was published in the Internet Engineering Task Force (IETF) as Experimental RFC 3561 [4] in 2003.

How it works

Each node has its own sequence number that grows monotonically over time and ensures that there are no loops in the paths used. In addition, each network component assigned to routing functionality stores its own path index, which contains the address of the next node in the direction of the destination (next hop), its sequence number, and the total distance given in hops, or possibly other metrics designed to measure link quality.

In AODV, the network remains completely silent until a connection is required to forward a data packet. When routes need to be searched on the network, AODV resorts to the following packets defined by its protocol:

These messages can be implemented as simple UDP packets, so routing is still based on the Internet Protocol (IP).

RREQ packets are broadcast from the source node, so a burst of messages is generated and forwarded through the entire network. When a node in the network receives a request packet, it can send an RREP packet through a temporary path to the requesting node, which can then exploit the newly received information. Generally, each node compares different paths based on their length and chooses the most convenient one. If a node is no longer reachable, a RERR message is generated to alert the rest of the network.

Each RREQ has a "time to live" that limits the times it can be retransmitted. In addition, AODV implements a binary backoff mechanism in case the node does not receive a response to its RREQ, whereby requests are repeated at linearly increasing time intervals up to a maximum set by the implementation.

Evaluation

The main advantage of AODV is that it does not generate traffic in the case of already established and working routes. In fact, the algorithm itself is completely irrelevant as long as it does not turn out to be necessary to send a packet to a node whose route is unknown. Beyond that, distance vector-based routing is computationally simple and does not require large amounts of memory.

However, the protocol takes longer than other protocols to establish a connection between two nodes in a network.

See also

Related Research Articles

Link-state routing protocols are one of the two main classes of routing protocols used in packet switching networks for computer communications, the others being distance-vector routing protocols. Examples of link-state routing protocols include Open Shortest Path First (OSPF) and Intermediate System to Intermediate System (IS-IS).

<span class="mw-page-title-main">Wireless mesh network</span> Radio nodes organized in a mesh topology

A wireless mesh network (WMN) is a communications network made up of radio nodes organized in a mesh topology. It can also be a form of wireless ad hoc network.

<span class="mw-page-title-main">Optimized Link State Routing Protocol</span> IP routing protocol optimized for mobile ad hoc networks

The Optimized Link State Routing Protocol (OLSR) is an IP routing protocol optimized for mobile ad hoc networks, which can also be used on other wireless ad hoc networks. OLSR is a proactive link-state routing protocol, which uses hello and topology control (TC) messages to discover and then disseminate link state information throughout the mobile ad hoc network. Individual nodes use this topology information to compute next hop destinations for all nodes in the network using shortest hop forwarding paths.

Topology broadcast based on reverse-path forwarding (TBRPF) is a link-state routing protocol for wireless mesh networks.

Dynamic Source Routing (DSR) is a routing protocol for wireless mesh networks. It is similar to AODV in that it forms a route on-demand when a transmitting node requests one. However, it uses source routing instead of relying on the routing table at each intermediate device.

Delay-tolerant networking (DTN) is an approach to computer network architecture that seeks to address the technical issues in heterogeneous networks that may lack continuous network connectivity. Examples of such networks are those operating in mobile or extreme terrestrial environments, or planned networks in space.

Destination-Sequenced Distance-Vector Routing (DSDV) is a table-driven routing scheme for ad hoc mobile networks based on the Bellman–Ford algorithm. It was developed by C. Perkins and P. Bhagwat in 1994. The main contribution of the algorithm was to solve the routing loop problem. Each entry in the routing table contains a sequence number, the sequence numbers are generally even if a link is present; else, an odd number is used. The number is generated by the destination, and the emitter needs to send out the next update with this number. Routing information is distributed between nodes by sending full dumps infrequently and smaller incremental updates more frequently.

In wireless networking, On-Demand Multicast Routing Protocol is a protocol for routing multicast and unicast traffic throughout Ad hoc wireless mesh networks.

The DYMO routing protocol is successor to the popular Ad hoc On-Demand Distance Vector (AODV) Routing protocol and shares many of its benefits. It is, however, slightly easier to implement and designed with future enhancements in mind.

6LoWPAN was a working group of the Internet Engineering Task Force (IETF). It was created with the intention of applying the Internet Protocol (IP) even to the smallest devices, enabling low-power devices with limited processing capabilities to participate in the Internet of Things.

A wireless ad hoc network (WANET) or mobile ad hoc network (MANET) is a decentralized type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers or wireless access points. Instead, each node participates in routing by forwarding data for other nodes. The determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.

<span class="mw-page-title-main">B.A.T.M.A.N.</span> Routing protocol for multi-hop mobile ad hoc networks

The Better Approach to Mobile Ad-hoc Networking (B.A.T.M.A.N.) is a routing protocol for multi-hop mobile ad hoc networks which is under development by the German "Freifunk" community and intended to replace the Optimized Link State Routing Protocol (OLSR).

Routing in delay-tolerant networking concerns itself with the ability to transport, or route, data from a source to a destination, which is a fundamental ability all communication networks must have. Delay- and disruption-tolerant networks (DTNs) are characterized by their lack of connectivity, resulting in a lack of instantaneous end-to-end paths. In these challenging environments, popular ad hoc routing protocols such as AODV and DSR fail to establish routes. This is due to these protocols trying to first establish a complete route and then, after the route has been established, forward the actual data. However, when instantaneous end-to-end paths are difficult or impossible to establish, routing protocols must take to a "store and forward" approach, where data is incrementally moved and stored throughout the network in hopes that it will eventually reach its destination. A common technique used to maximize the probability of a message being successfully transferred is to replicate many copies of the message in hopes that one will succeed in reaching its destination.

Vehicular Reactive Routing protocol (VRR) is a reactive routing protocol with geographical features which is specifically designed for Wireless Access for the Vehicular Environment (WAVE) standard in Vehicular ad hoc Networks (VANETs). The protocol takes advantages of the multichannel scheme defined in WAVE and uses the Control Channel (CCH) for signalling, and relies on one of the multiple Service Channels (SCHs) for payload data dissemination.

IEEE 802.11s is a wireless local area network (WLAN) standard and an IEEE 802.11 amendment for mesh networking, defining how wireless devices can interconnect to create a wireless LAN mesh network, which may be used for relatively fixed topologies and wireless ad hoc networks. The IEEE 802.11s task group drew upon volunteers from university and industry to provide specifications and possible design solutions for wireless mesh networking. As a standard, the document was iterated and revised many times prior to finalization.

The Hybrid Wireless Mesh Protocol (HWMP), part of IEEE 802.11s, is a basic routing protocol for a wireless mesh network. It is based on AODV and tree-based routing. It relies on a Peer Link Management protocol by which each Mesh Point discovers and tracks neighboring nodes. If any of these are connected to a wired backhaul, there is no need for HWMP, which selects paths from those assembled by compiling all mesh point peers into one composite map.

A mobile wireless sensor network (MWSN) can simply be defined as a wireless sensor network (WSN) in which the sensor nodes are mobile. MWSNs are a smaller, emerging field of research in contrast to their well-established predecessor. MWSNs are much more versatile than static sensor networks as they can be deployed in any scenario and cope with rapid topology changes. However, many of their applications are similar, such as environment monitoring or surveillance. Commonly, the nodes consist of a radio transceiver and a microcontroller powered by a battery, as well as some kind of sensor for detecting light, heat, humidity, temperature, etc.

Associativity-based routing is a mobile routing protocol invented for wireless ad hoc networks, also known as mobile ad hoc networks (MANETs) and wireless mesh networks. ABR was invented in 1993, filed for a U.S. patent in 1996, and granted the patent in 1999. ABR was invented by Chai Keong Toh while doing his Ph.D. at Cambridge University.

Elizabeth Michelle Belding is a computer scientist specializing in mobile computing and wireless networks. She is a professor of computer science at the University of California, Santa Barbara.

References

  1. Perkins, C.; Royer, E. (1999), Ad hoc On Demand Distance Vector (AODV) Routing (PDF)
  2. Jhaveri, R.H.; Patel, N.M. (2015). "Mobile Ad-hoc Networking with AODV: A Review". International Journal of Next-Generation Computing. 6 (3): 165–191.
  3. Prof. Elizabeth Belding receives the 2018 SIGMOBILE Test-of-time Award, University of California, Santa Barbara, retrieved 2018-12-07
  4. Perkins, C.; Royer, E.; Das, S. (2003), Ad hoc On-Demand Distance Vector Routing (AODV) Experimental RFC 3561, doi:10.17487/RFC3561