Wireless local loop

Last updated

Wireless local loop (WLL) is the use of a wireless communications link as the "last mile / first mile" connection for delivering plain old telephone service (POTS) or Internet access (marketed under the term "broadband") to telecommunications customers. Various types of WLL systems and technologies exist.

Contents

Other terms for this type of access include broadband wireless access (BWA), radio in the loop (RITL), fixed-radio access (FRA), fixed wireless access (FWA) and metro wireless (MW).

Definition of fixed wireless service

Fixed wireless terminal (FWT) units differ from conventional mobile terminal units operating within cellular networks   such as GSM or LTE   in that a fixed wireless terminal or desk phone will be limited to an almost permanent location with almost no roaming abilities.

WLL and FWT are generic terms for radio-based telecommunications technologies and the respective devices, which can be implemented using a number of different wireless and radio technologies.

Wireless local-loop services are segmented into a number of broad market and deployment groups. Services are split between licensed  commonly used by carriers and telcos   and unlicensed services more commonly deployed by home users and wireless ISPs (WISPs).[ citation needed ]

Licensed Point-to-Point Microwave

Licensed point-to-point microwave was first deployed by AT&T Long Lines in the 1960s for high-bandwidth, interstate transmission of voice, data and television. AT&T's network covered the entire U.S., carried across hundreds of microwave towers, largely transmitting at 3700–4200 MHz and 5000–6200 MHz. The network was slowly obsoleted, starting in the late 1980's, as fiber optics became the solution of choice for communications backhaul.

Following the Breakup of the Bell System on January 8, 1982, licensed point-to-point microwave solutions could be sold to enterprise and government accounts for their own private use. Frequently, the argument was to bypass wired local loops in order to save money or backup weak copper cables.

In 1987, Microwave Bypass modified a high-frequency licensed microwave radio (23GHz) and developed the first 802.3 wireless interface, dubbed the EtherWave Transceiver. The result was the first (FCC licensed) point-to-point microwave radio capable of delivering 10 Mbps Ethernet, full-duplex, between local and remote networks up to 4.3 miles apart. Distance limitation had more to do with 802.3 Ethernet latency than microwave range. Later, in 1988 Microwave Bypass teamed up with Cisco to create an end-to-end full-duplex connection that doubled the distance of the previous 4.3 mile limitation.

Then, the point-to-point microwave solution was referred to as, "LAN extension over microwave", thereafter, "wireless backhaul," and it was exclusively deployed for enterprise and government clients.

In the 1990s, point-to-point microwave flourished under the growth of cell towers. This growth spurred research in this area, and as the cost continues to decline, it is being used as an alternative to T-1, T-3, and fiber connectivity.[ citation needed ]

Following the release of wi-fi IEEE 802.11, licensed point-to-point microwave became an addition tool for wireless internet service providers (WISP) and ISPs to close the Digital divide.

In 2017, a company called Climate Resilient Internet, LLC, formed to develop a new standard and certification for point-to-point microwave ("fixed wireless") for enterprise and government resilience to extreme weather, grid outages and terror attacks. The company was co-founded by David Theodore, founder of Microwave Bypass, who pioneered the first use of point-to-point microwave for internet access. [1] [2]

Licensed point-to-multipoint microwave services

Multipoint microwave licenses are generally more expensive than point-to-point licenses. A single point-to-point system could be installed and licensed for US$50,000 to US$200,000. A multipoint license would start in the millions of dollars. Multichannel multipoint distribution service (MMDS) and local multipoint distribution service (LMDS) were the first true multipoint services for wireless local loop. While Europe and the rest of the world developed the 3500 MHz band for affordable broadband fixed wireless, the U.S. provided LMDS and MMDS, and most implementations in the United States were conducted at 2500 MHz. The largest was Sprint Broadband's deployment of hybrid networks equipment. Sprint was plagued with difficulties operating the network profitably, and service was often spotty, due to inadequate radio link quality.[ citation needed ]

Unlicensed multi point wireless service

Most of the growth in long-range radio communications since 2002 has been in the license-free bands (mostly 900 MHz, 2.4 GHz and 5.8 GHz). Global Pacific Internet and Innetix started wireless service in California in 1995 using Breezecom (Alvarion) frequency-hopping radio, which later became the standard 802.11.[ citation needed ]

A few years later NextWeb Networks of Fremont began deploying reliable license-free service. For Nextweb they originally deployed 802.11b equipment and later switched to Axxcelera, which uses proprietary protocol.

1995–2004: License-free equipment

Most of the early vendors of license-free fixed wireless equipment such as Adaptive Broadband (Axxcelera), Trango Broadband, Motorola (Orthogon), Proxim Networks, Redline Communications and BreezeCom (Alvarion) used proprietary protocols and hardware, creating pressure on the industry to adopt a standard for unlicensed fixed wireless. These MAC layers typically used a 15–20 MHz channel using direct-sequence spread spectrum and BPSK, CCK and QPSK for modulation.

These devices all describe the customer premises wireless system as the subscriber unit (SU), and the operator transmitter delivering the last mile local loop services as the access point (AP). 802.11 uses the terms AP and STA (station).

2002–2005: Wi-Fi local loop

Originally designed for short-range mobile internet and local area network access, IEEE 802.11 has emerged as the de facto standard for unlicensed wireless local loop. More 802.11 equipment is deployed for long-range data service than any other technology. These systems have provided varying results, as the operators were often small and poorly trained in radio communications, additionally 802.11 was not intended to be used at long ranges and suffered from a number of problems, such as the hidden node problem. Many companies such as KarlNet began modifying the 802.11 MAC to attempt to deliver higher performance at long ranges.

2005–present: Maturation of the wireless ISP market

In nearly every metropolitan area worldwide, operators and hobbyists deployed more and more unlicensed broadband point-to-multipoint systems. Providers that had rave reviews when they started faced the prospect of seeing their networks degrade in performance, as more and more devices were deployed using the license-free U-NII (5.3/5.4 GHz) and ISM (2.4 and 5.8 GHz) bands and competitors sprung up around them.

The growing interference problem

Interference caused the majority of unlicensed wireless services to have much higher error rates and interruptions than equivalent wired or licensed wireless networks, such as the copper telephone network and the coaxial-cable network. This caused growth to slow, customers to cancel, and many operators to rethink their business model.

There were several responses to these problems.

2003: Voluntary frequency coordination (USA)

Next-Web, Etheric Networks, Gate Speed and a handful of other companies founded the first voluntary spectrum coordination, working entirely independently of government regulators. This organization was founded in March 2003 as BANC, [3] "Bay Area Network Coordination". By maintaining frequencies used in an inter-operator database, disruptions between coordinating parties were minimized, as well as the cost of identifying new or changing transmission sources, by using the frequency database to determine what bands were in use. Because the parties in BANC comprised the majority of operators in the Bay Area, they used peer pressure to imply that operators who did not play nice would be collectively punished by the group, through interfering with the non-cooperative, while striving not to interfere with the cooperative. BANC was then deployed in Los Angeles. Companies such as Deutsche Telekom joined. It looked like the idea had promise.

2005: Operators flee unlicensed for licensed

The better capitalized operators began reducing their focus on unlicensed and instead focused on licensed systems, as the constant fluctuations in signal quality caused them to have very high maintenance costs. NextWeb, acquired by Covad for a very small premium over the capital invested in it, is one operator who focused on licensed service, as did WiLine Networks. This led to fewer of the more responsible and significant operators actually using the BANC system. Without its founders active involvement, the system languished.

2005 to present: Adaptive network technology

Operators began to apply the principles of self-healing networks. Etheric Networks followed this path. Etheric Networks focused on improving performance by developing dynamic interference and fault detection and reconfiguration, as well as optimizing quality based routing software, such as MANET and using multiple paths to deliver service to customers. This approach is generally called "mesh networking", which relies on ad hoc networking protocols, however, mesh and ad hoc networking protocols have yet to deliver high-speed low-latency business-class end-to-end reliable local-loop service, as the paths can sometimes traverse exponentially more radio links than a traditional star (AP  SU) topology.

Adaptive network management actively monitors the local-loop quality and behaviour, using automation to reconfigure the network and its traffic flows, to avoid interference and other failures.

Mobile technologies

These include Global System for Mobile Communications (GSM), time-division multiple access (TDMA), code-division multiple access (CDMA), and Digital Enhanced Cordless Telecommunications (DECT). Earlier implementations included such technologies as Advanced Mobile Phone System (AMPS).

Deployment

The wireless local loop market is currently[ when? ] an extremely high-growth market, offering Internet service providers immediate access to customer markets without having to either lay cable through a metropolitan area, or work through the ILECs, reselling the telephone, cable or satellite networks, owned by companies that prefer to largely sell direct.

This trend revived the prospects for local and regional ISPs, as those willing to deploy fixed wireless networks were not at the mercy of the large telecommunication monopolies. They were at the mercy of unregulated re-use of unlicensed frequencies upon which they communicate.

Due to the enormous quantity of 802.11 "Wi-Fi" equipment and software, coupled with the fact that spectrum licenses are not required in the ISM and U-NII bands, the industry has moved well ahead of the regulators and the standards bodies.

WLL methods

Manufacturers

See also

Related Research Articles

<span class="mw-page-title-main">Wireless broadband</span> Telecommunications technology

Wireless broadband is a telecommunications technology that provides high-speed wireless Internet access or computer networking access over a wide area. The term encompasses both fixed and mobile broadband.

The ISM radio bands are portions of the radio spectrum reserved internationally for industrial, scientific, and medical (ISM) purposes, excluding applications in telecommunications. Examples of applications for the use of radio frequency (RF) energy in these bands include RF heating, microwave ovens, and medical diathermy machines. The powerful emissions of these devices can create electromagnetic interference and disrupt radio communication using the same frequency, so these devices are limited to certain bands of frequencies. In general, communications equipment operating in ISM bands must tolerate any interference generated by ISM applications, and users have no regulatory protection from ISM device operation in these bands.

<span class="mw-page-title-main">Ultra high frequency</span> Electromagnetic spectrum 300–3000 MHz

Ultra high frequency (UHF) is the ITU designation for radio frequencies in the range between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band as the wavelengths range from one meter to one tenth of a meter. Radio waves with frequencies above the UHF band fall into the super-high frequency (SHF) or microwave frequency range. Lower frequency signals fall into the VHF or lower bands. UHF radio waves propagate mainly by line of sight; they are blocked by hills and large buildings although the transmission through building walls is strong enough for indoor reception. They are used for television broadcasting, cell phones, satellite communication including GPS, personal radio services including Wi-Fi and Bluetooth, walkie-talkies, cordless phones, satellite phones, and numerous other applications.

<span class="mw-page-title-main">Multichannel multipoint distribution service</span> Wireless communications technology

Multichannel multipoint distribution service (MMDS), formerly known as broadband radio service (BRS) and also known as wireless cable, is a wireless telecommunications technology, used for general-purpose broadband networking or, more commonly, as an alternative method of cable television programming reception.

<span class="mw-page-title-main">Point-to-multipoint communication</span> Communications method involving a one-to-many connection

In telecommunications, point-to-multipoint communication is communication which is accomplished via a distinct type of one-to-many connection, providing multiple paths from a single location to multiple locations.

<span class="mw-page-title-main">Wireless Internet service provider</span> Internet service provider with a network based on wireless networking

A wireless Internet service provider (WISP) is an Internet service provider with a network based on wireless networking. Technology may include commonplace Wi-Fi wireless mesh networking, or proprietary equipment designed to operate over open 900 MHz, 2.4 GHz, 4.9, 5, 24, and 60 GHz bands or licensed frequencies in the UHF band, LMDS, and other bands from 6 GHz to 80 GHz.

<span class="mw-page-title-main">MobileStar</span>

MobileStar Network was a wireless Internet service provider which first gained notability in deploying Wi-Fi Internet access points in Starbucks coffee shops, American Airlines Admiral Club locations across the United States and at Hilton Hotels. Founded by Mark Goode and Greg Jackson in 1998, MobileStar was the first wireless ISP to place a WiFi hotspot in an airport, a hotel, or a coffee shop. MobileStar's core value proposition was to provide wireless broadband connectivity for the business traveler in all the places s/he was likely to "sleep, eat, move, or meet." MobileStar's founder, Mark Goode, was the first to coin the now industry standard expression "hotspot," as a reference to a location equipped with an 802.11 wireless access point.

<span class="mw-page-title-main">WiMAX</span> Wireless broadband standard

Worldwide Interoperability for Microwave Access (WiMAX) is a family of wireless broadband communication standards based on the IEEE 802.16 set of standards, which provide physical layer (PHY) and media access control (MAC) options.

The S band is a designation by the Institute of Electrical and Electronics Engineers (IEEE) for a part of the microwave band of the electromagnetic spectrum covering frequencies from 2 to 4 gigahertz (GHz). Thus it crosses the conventional boundary between the UHF and SHF bands at 3.0 GHz. The S band is used by airport surveillance radar for air traffic control, weather radar, surface ship radar, and some communications satellites, particularly satellites used by NASA to communicate with the Space Shuttle and the International Space Station. The 10 cm radar short-band ranges roughly from 1.55 to 5.2 GHz. The S band also contains the 2.4–2.483 GHz ISM band, widely used for low power unlicensed microwave devices such as cordless phones, wireless headphones (Bluetooth), wireless networking (WiFi), garage door openers, keyless vehicle locks, baby monitors as well as for medical diathermy machines and microwave ovens. India's regional satellite navigation network (IRNSS) broadcasts on 2.483778 to 2.500278 GHz.

The V band ("vee-band") is a standard designation by the Institute of Electrical and Electronics Engineers (IEEE) for a band of frequencies in the microwave portion of the electromagnetic spectrum ranging from 40 to 75 gigahertz (GHz). The V band is not heavily used, except for millimeter wave radar research and other kinds of scientific research. It should not be confused with the 600–1,000 MHz range of Band V of the UHF frequency range.

Local multipoint distribution service (LMDS) is a broadband wireless access technology originally designed for digital television transmission (DTV). It was conceived as a fixed wireless, point-to-multipoint technology for utilization in the last mile. LMDS commonly operates on microwave frequencies across the 26 GHz and 29 GHz bands. In the United States, frequencies from 31.0 through 31.3 GHz are also considered LMDS frequencies.

The Unlicensed National Information Infrastructure (U-NII) radio band, as defined by the United States Federal Communications Commission, is part of the radio frequency spectrum used by WLAN devices and by many wireless ISPs.

<span class="mw-page-title-main">High-speed multimedia radio</span>

High-speed multimedia radio (HSMM) is the implementation of high-speed wireless TCP/IP data networks over amateur radio frequency allocations using commercial off-the-shelf (COTS) hardware such as 802.11 Wi-Fi access points. This is possible because the 802.11 unlicensed frequency bands partially overlap with amateur radio bands and ISM bands in many countries. Only licensed amateur radio operators may legally use amplifiers and high-gain antennas within amateur radio frequencies to increase the power and coverage of an 802.11 signal.

IEEE 802.11y-2008 is an amendment to the IEEE 802.11-2007 standard that enables data transfer equipment to operate using the 802.11a protocol on a co-primary basis in the 3650 to 3700 MHz band except when near a grandfathered satellite earth station. IEEE 802.11y is only being allowed as a licensed band. It was approved for publication by the IEEE on September 26, 2008.

In a hierarchical telecommunications network, the backhaul portion of the network comprises the intermediate links between the core network, or backbone network, and the small subnetworks at the edge of the network.

Cambium Networks Corporation is a wireless infrastructure provider that offers fixed wireless and Wi-Fi to broadband service providers and enterprises to provide Internet access. An American telecommunications infrastructure company, it provides wireless technology, including Enterprise WiFi, switching solutions, Internet of Things, and fixed wireless broadband and Wi-Fi for enterprises. Publicly traded on the NASDAQ stock exchange, it spun out of Motorola in October 2011.

<span class="mw-page-title-main">Alvarion</span>

Alvarion Technologies Ltd. is a global provider of autonomous Wi-Fi networks designed with self-organizing capabilities for carrier-grade Wi-Fi, enterprise connectivity, smart city planning, smart hospitality, connected campuses, and connected events.

Long-range Wi-Fi is used for low-cost, unregulated point-to-point computer network connections, as an alternative to other fixed wireless, cellular networks or satellite Internet access.

<span class="mw-page-title-main">Fixed wireless</span>

Fixed wireless is the operation of wireless communication devices or systems used to connect two fixed locations with a radio or other wireless link, such as laser bridge. Usually, fixed wireless is part of a wireless LAN infrastructure. The purpose of a fixed wireless link is to enable data communications between the two sites or buildings. Fixed wireless data (FWD) links are often a cost-effective alternative to leasing fiber or installing cables between the buildings.

Citizens Broadband Radio Service (CBRS) is a 150 MHz wide broadcast band of the 3.5 GHz band in the United States. In 2017, the US Federal Communications Commission (FCC) completed a process which began in 2012 to establish rules for commercial use of this band, while reserving parts of the band for the US Federal Government to limit interference with US Navy radar systems and aircraft communications.

References

  1. "David Theodore", https://www.davidtheodore.com title=David Theodore fixed wireless innovator (accessed January 11, 2023).
  2. "Climate Resilient Internet", https://www.climateresilientinternet.com title=Fixed Wireless Standard for Internet Resilience (accessed January 11, 2023).
  3. wbanc.com.