Quad (rocket)

Last updated
Quad
FunctionVTVL
ManufacturerArmadillo Aerospace
Size
Height~1.9 m (~75 inches)
Width~1.9 m (~75 inches)
Mass~1500 lbs (~680 kg)
Capacity
Pixel attempting level 1- white tanks are insulated and contain liquid oxygen, grey tanks contain ethanol ArmadilloAerospace Pixel Attempt1 c.jpg
Pixel attempting level 1- white tanks are insulated and contain liquid oxygen, grey tanks contain ethanol

In rocketry, the Armadillo Aerospace Quad vehicle called Pixel is a computer-controlled VTVL rocket that was used in 2006 to compete in the Lunar Lander Challenge. [1]

Contents

General description

The quad vehicle design is a pressure fed in blow-down[ clarification needed ] mode from an initial pressure of 320 psi for level 1 (400 psi level 2).[ citation needed ] The cold gas vernier engines are cross-fed by gas drawn from ullage space of the opposite tank. The vehicle was able to transfer propellant through connecting pipes between opposite tanks by controlling ullage pressures with the thrusters; this helps it balance, minimizing gas use. The main engine had two-axis thrust vectoring.[ citation needed ] The vehicle was fully computer controlled; with guidance from GPS and fiber optic gyros.

Specification

The specification for Pixel/Texel for level 1:[ citation needed ]

Engine (XPC-06):[ citation needed ]

Purchase by NASA

On 8 March 2010, Matthew Ross of Armadillo Aerospace confirmed that Pixel had been converted to methane/LOX propellant and sold to NASA as part of the Project M testbed for the Autonomous Landing Hazard Avoidance Technology (ALHAT) LIDAR range finding system under development by Jet Propulsion Laboratory (JPL). [2]

See also

Related Research Articles

<span class="mw-page-title-main">Solid-propellant rocket</span> Rocket with a motor that uses solid propellants

A solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants (fuel/oxidizer). The earliest rockets were solid-fuel rockets powered by gunpowder; they were used in warfare by the Chinese, Persians, Mongols, and Indians as early as the 13th century.

<span class="mw-page-title-main">Aerospike engine</span> Type of rocket engine that maintains its aerodynamic efficiency across a wide range of altitudes

The aerospike engine is a type of rocket engine that maintains its aerodynamic efficiency across a wide range of altitudes. It belongs to the class of altitude compensating nozzle engines. Aerospike engines have been studied for several years and are the baseline engines for many single-stage-to-orbit (SSTO) designs and were also a strong contender for the Space Shuttle main engine. However, no such engine is in commercial production, although some large-scale aerospikes are in testing phases.

<span class="mw-page-title-main">Armadillo Aerospace</span> American aerospace startup company

Armadillo Aerospace was an aerospace startup company based in Mesquite, Texas. Its initial goal was to build a crewed suborbital spacecraft capable of space tourism, and it had also stated long-term ambitions of orbital spaceflight. The company was founded by John Carmack, co-founder and former chief technical officer of id Software.

<span class="mw-page-title-main">Rocket engine</span> Non-air breathing jet engine used to propel a missile or vehicle

A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly called rockets. Rocket vehicles carry their own oxidiser, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles.

<span class="mw-page-title-main">Canadian Arrow</span> Company

The Canadian Arrow was a privately funded, early-2000s rocket and space tourism project concept founded by London, Ontario, Canada entrepreneurs Geoff Sheerin, Dan McKibbon and Chris Corke. The project's objective was to take the first civilians into space, on a vertical sub-orbital spaceflight reaching an altitude of 112 km.

<span class="mw-page-title-main">Space Shuttle external tank</span> Component of the Space Shuttle launch vehicle

The Space Shuttle external tank (ET) was the component of the Space Shuttle launch vehicle that contained the liquid hydrogen fuel and liquid oxygen oxidizer. During lift-off and ascent it supplied the fuel and oxidizer under pressure to the three RS-25 main engines in the orbiter. The ET was jettisoned just over 10 seconds after main engine cut-off (MECO) and it re-entered the Earth's atmosphere. Unlike the Solid Rocket Boosters, external tanks were not re-used. They broke up before impact in the Indian Ocean, away from shipping lanes and were not recovered.

<span class="mw-page-title-main">Rocketdyne J-2</span> Rocket engine

The J-2 is a liquid-fuel cryogenic rocket engine used on NASA's Saturn IB and Saturn V launch vehicles. Built in the U.S. by Rocketdyne, the J-2 burned cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, with each engine producing 1,033.1 kN (232,250 lbf) of thrust in vacuum. The engine's preliminary design dates back to recommendations of the 1959 Silverstein Committee. Rocketdyne won approval to develop the J-2 in June 1960 and the first flight, AS-201, occurred on 26 February 1966. The J-2 underwent several minor upgrades over its operational history to improve the engine's performance, with two major upgrade programs, the de Laval nozzle-type J-2S and aerospike-type J-2T, which were cancelled after the conclusion of the Apollo program.

<span class="mw-page-title-main">Pressure-fed engine</span> Rocket engine operation method

The pressure-fed engine is a class of rocket engine designs. A separate gas supply, usually helium, pressurizes the propellant tanks to force fuel and oxidizer to the combustion chamber. To maintain adequate flow, the tank pressures must exceed the combustion chamber pressure.

<span class="mw-page-title-main">Atlas-Centaur</span> Family of space launch vehicles

The Atlas-Centaur was a United States expendable launch vehicle derived from the SM-65 Atlas D missile. The vehicle featured a Centaur upper stage, the first such stage to use high-performance liquid hydrogen as fuel. Launches were conducted from Launch Complex 36 at the Cape Canaveral Air Force Station (CCAFS) in Florida. After a strenuous flight test program, Atlas-Centaur went on to launch several crucial spaceflight missions for the United States, including Surveyor 1, Mariner 4, and Pioneer 10/11. The vehicle would be continuously developed and improved into the 1990s, with the last direct descendant being the highly successful Atlas II.

<span class="mw-page-title-main">OTRAG (rocket)</span>

The OTRAG rocket was a modular satellite-delivery rocket developed by the OTRAG company in the 1970s and 80s. The OTRAG rocket was to become a rocket built up from several mass-produced units, intended to carry satellites with a weight of 1-10 tons or more into orbit. Mass production meant that the vehicle was projected to have been 10x cheaper than conventional vehicles of similar capability.

<span class="mw-page-title-main">Masten Space Systems</span>

Masten Space Systems was an aerospace manufacturer startup company in Mojave, California that was developing a line of vertical takeoff, vertical landing (VTVL) rockets, initially for uncrewed research sub-orbital spaceflights and eventually intended to support robotic orbital spaceflight launches.

The max q, or maximum dynamic pressure, condition is the point when an aerospace vehicle's atmospheric flight reaches the maximum difference between the fluid dynamics total pressure and the ambient static pressure. For an airplane, this occurs at the maximum speed at minimum altitude corner of the flight envelope. For a space vehicle launch, this occurs at the crossover point between dynamic pressure increasing with speed and static pressure decreasing with increasing altitude. This is an important design factor of aerospace vehicles, since the aerodynamic structural load on the vehicle is proportional to dynamic pressure.

<span class="mw-page-title-main">Lunar Lander Challenge</span> Competition funded by NASAs Centennial Challenges program

The Northrop Grumman Lunar Lander Challenge (NG-LLC) was a competition funded by NASA's Centennial Challenges program. The competition offered a series of prizes for teams that launch a vertical takeoff/vertical landing (VTVL) rocket that achieved the total delta-v needed for a vehicle to move between the surface of the Moon and its orbit. The multi-level competition was conducted by the X PRIZE Foundation, with sponsorship from the Northrop Grumman Corporation who ran the ongoing competition. The prize purses were paid by NASA. It was held annually at the X PRIZE Cup, making its debut at the 2006 Wirefly X PRIZE Cup in October, 2006, until 2009 when the prize purse was awarded to Masten Space Systems and Armadillo Aerospace.

<span class="mw-page-title-main">Pintle injector</span> Propellant injection device for a rocket engine.

The pintle injector is a type of propellant injector for a bipropellant rocket engine. Like any other injector, its purpose is to ensure appropriate flow rate and intermixing of the propellants as they are forcibly injected under high pressure into the combustion chamber, so that an efficient and controlled combustion process can happen.

<span class="mw-page-title-main">Rocket propellant</span> Chemical or mixture used as fuel for a rocket engine

Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.

<span class="mw-page-title-main">Project Morpheus</span> NASA vertical landing and takeoff test vehicle

Project Morpheus was a NASA project that began in 2010 to develop a vertical takeoff and vertical landing (VTVL) test vehicle called the Morpheus Lander. It is intended to demonstrate a new nontoxic spacecraft propellant system and an autonomous landing and hazard detection technology. The prototype planetary lander is capable of autonomous flight, including vertical takeoff and landings. The vehicles are NASA-designed robotic landers that will be able to land and take off with 1,100 pounds(500 kg) of cargo on the Moon. The prospect is an engine that runs reliably on propellants that are not only cheaper and safer here on Earth, but could also be potentially manufactured on the Moon and Mars.

The descent propulsion system or lunar module descent engine (LMDE), internal designation VTR-10, is a variable-throttle hypergolic rocket engine invented by Gerard W. Elverum Jr. and developed by Space Technology Laboratories (TRW) for use in the Apollo Lunar Module descent stage. It used Aerozine 50 fuel and dinitrogen tetroxide oxidizer. This engine used a pintle injector, which paved the way for other engines to use similar designs.

<span class="mw-page-title-main">Ascent propulsion system</span> Apollo Lunar Module rocket engine

The ascent propulsion system (APS) or lunar module ascent engine (LMAE) is a fixed-thrust hypergolic rocket engine developed by Bell Aerosystems for use in the Apollo Lunar Module ascent stage. It used Aerozine 50 fuel, and N
2
O
4
oxidizer. Rocketdyne provided the injector system, at the request of NASA, when Bell could not solve combustion instability problems.

The RS-18 is a reconfigured version of the Rocketdyne Lunar Module Ascent Engine (LMAE), modified to burn liquid oxygen (LOX) and liquid methane (CH4) for NASA's Exploration Systems Architecture Study (ESAS) engine testing in 2008.

<span class="mw-page-title-main">SpaceX Raptor</span> SpaceX family of liquid-fuel rocket engines

Raptor is a family of full-flow staged-combustion-cycle rocket engines developed and manufactured by SpaceX for use on the SpaceX Starship. The engine is powered by cryogenic liquid methane and liquid oxygen ("methalox"), as opposed to the RP-1 and liquid oxygen ("kerolox") combination used in SpaceX's earlier Merlin and Kestrel rocket engines. The Raptor engine has about triple the thrust of SpaceX's Merlin 1D engine, which powers the Falcon 9 and Falcon Heavy launch vehicles.

References

  1. Young, Kelly (October 13, 2006). "Mock lunar landers to go head-to-head in X Prize Cup". New Scientist. Retrieved 2013-01-04.
  2. "At NASA, a Quiet Quest to Send a Humanoid Robot to the Moon". New York Times . 1 November 2010. Retrieved 4 January 2013.