Qitai Radio Telescope

Last updated

Qitai Radio Telescope
Alternative namesQTT OOjs UI icon edit-ltr-progressive.svg
Location(s) Qitai County, Changji Hui Autonomous Prefecture, Xinjiang, PRC
Coordinates 43°36′04″N89°40′57″E / 43.6011°N 89.6825°E / 43.6011; 89.6825 OOjs UI icon edit-ltr-progressive.svg
Organization China National Space Administration   OOjs UI icon edit-ltr-progressive.svg
Altitude1,800 m (5,900 ft) OOjs UI icon edit-ltr-progressive.svg
Telescope style radio telescope   OOjs UI icon edit-ltr-progressive.svg
Diameter110 m (360 ft 11 in) OOjs UI icon edit-ltr-progressive.svg
Website qtt.xao.cas.cn/xmjj/ OOjs UI icon edit-ltr-progressive.svg
China edcp relief location map.jpg
Red pog.svg
Location of Qitai Radio Telescope

The Xinjiang Qitai 110m Radio Telescope (QTT) is a planned radio telescope to be built in Qitai County in Xinjiang, China. Upon completion, which is scheduled for 2028, [1] it will be the world's largest fully steerable single-dish radio telescope. It is intended to operate at 150 MHz to 115 GHz. [2] The construction of the antenna project is under the leadership of the Xinjiang Astronomical Observatory of the Chinese Academy of Sciences. [3] [4]

Contents

The fully steerable dish of the QTT will allow it to observe 75% of the stars in the sky at any given time. [5] The QTT and the Five-hundred-meter Aperture Spherical Telescope (FAST), also located in China, can both observe frequencies in the "water hole" that has traditionally been favored by scientists engaged in the Search for Extraterrestrial Intelligence (SETI), meaning that each observatory could provide follow-up observations of putative signals from extraterrestrials detected in this quiet part of the radio spectrum at the other observatory. [6]

The radio telescope site selection team considered 48 candidate locations throughout Xinjiang. The chosen site for the facility is in the foothills of the Tian Shan mountains, near Shihezi village, Banjiegou Town, about 46 km (straight-line distance) south-south-east of the Qitai county seat (Qitai Town). The mountain ridges surrounding the site are supposed to provide some protection from electromagnetic noise. The authorities propose designating a radio quiet zone (a 10 km by 15 km rectangle, much smaller than the United States National Radio Quiet Zone) around the future facility. [7] A paper from October 2023 stated that a radio quiet zone with a radius of 30 km will be established. The zone will have a core zone (2.5x4 km), restricted zone (10x15 km) and coordination zone (r=30 km) with reducing control levels. [2] [8]

China started to build the QTT in September 2022 and it will take six years to complete the telescope. [1]

Antenna

3D model of the QTT, published by Wang et al. 2023 QTT 3D rendering.png
3D model of the QTT, published by Wang et al. 2023

The QTT is a Gregorian parabolic antenna with an active main surface to correct the deformation caused by gravity. The antenna has an azimuth-elevation structure on a wheel-and-track mount. The back of the antenna has design similarities to the umbrella-like structure of the Eiffelsberg telescope. To reduce dead load and thermal deformation, the sub-reflector will use carbon fiber-reinforced plastic. The telescope can switch between Gregorian and primary focus. For the primary focus it uses the prime focus platform (PEP). The PEP is aligned to one of the quadruple legs in stow mode and it is moved horizontally over the sub-reflector in primary operation mode. The PEP contains receivers and auxiliary equipment. To access the telescope an elevator, stairs, catwalks, platforms and a crane is part of the antenna. [2]

Receivers

The QTT will contain broadband, ultra wide-band (UWB), multi-beam and phased array feeds (PAF) low-noise cryogenic receivers from 40 cm to 3 mm bands, all linearly polarized. Currently only 40 cm to 1.3 cm receivers are planned. [2]

Receivers [2]
TypeBand (cm)Radio Frequency (GHz)FocusTsys (K)
Single Beam400.27-1.8Primary20
150.7-4Primary16
54-16Gregory18
1.316-30Gregory20
PAF200.7-1.8Primary20

Goals

The main goals of the QTT include imaging of pulsars, stellar formation, and the large-scale radio structure of the universe. [7] [4] Other goals are the use of Pulsar Timing Arrays to detect nanoHertz gravitational waves, to be part of Very Long Baseline Interferometry, to study the interstellar medium, to study galaxies and black holes, to study dark matter and to carry out astrometry. [2]

Similar fully steerable telescopes

See also

Related Research Articles

<span class="mw-page-title-main">Radio telescope</span> Directional radio antenna used in radio astronomy

A radio telescope is a specialized antenna and radio receiver used to detect radio waves from astronomical radio sources in the sky. Radio telescopes are the main observing instrument used in radio astronomy, which studies the radio frequency portion of the electromagnetic spectrum emitted by astronomical objects, just as optical telescopes are the main observing instrument used in traditional optical astronomy which studies the light wave portion of the spectrum coming from astronomical objects. Unlike optical telescopes, radio telescopes can be used in the daytime as well as at night.

<span class="mw-page-title-main">Radio astronomy</span> Subfield of astronomy that studies celestial objects at radio frequencies

Radio astronomy is a subfield of astronomy that studies celestial objects at radio frequencies. The first detection of radio waves from an astronomical object was in 1933, when Karl Jansky at Bell Telephone Laboratories reported radiation coming from the Milky Way. Subsequent observations have identified a number of different sources of radio emission. These include stars and galaxies, as well as entirely new classes of objects, such as radio galaxies, quasars, pulsars, and masers. The discovery of the cosmic microwave background radiation, regarded as evidence for the Big Bang theory, was made through radio astronomy.

<span class="mw-page-title-main">Parabolic antenna</span> Type of antenna

A parabolic antenna is an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves. The most common form is shaped like a dish and is popularly called a dish antenna or parabolic dish. The main advantage of a parabolic antenna is that it has high directivity. It functions similarly to a searchlight or flashlight reflector to direct radio waves in a narrow beam, or receive radio waves from one particular direction only. Parabolic antennas have some of the highest gains, meaning that they can produce the narrowest beamwidths, of any antenna type. In order to achieve narrow beamwidths, the parabolic reflector must be much larger than the wavelength of the radio waves used, so parabolic antennas are used in the high frequency part of the radio spectrum, at UHF and microwave (SHF) frequencies, at which the wavelengths are small enough that conveniently sized reflectors can be used.

<span class="mw-page-title-main">Green Bank Telescope</span> Radio telescope in Green Bank, WV, US

The Robert C. Byrd Green Bank Telescope (GBT) in Green Bank, West Virginia, US is the world's largest fully steerable radio telescope, surpassing the Effelsberg 100-m Radio Telescope in Germany. The Green Bank site was part of the National Radio Astronomy Observatory (NRAO) until September 30, 2016. Since October 1, 2016, the telescope has been operated by the independent Green Bank Observatory. The telescope's name honors the late Senator Robert C. Byrd who represented West Virginia and who pushed the funding of the telescope through Congress.

<span class="mw-page-title-main">Very Long Baseline Array</span> Observatory

The Very Long Baseline Array (VLBA) is a system of ten radio telescopes which are operated remotely from their Array Operations Center located in Socorro, New Mexico, as a part of the National Radio Astronomy Observatory (NRAO). These ten radio antennas work together as an array that forms the longest system in the world that uses very long baseline interferometry. The longest baseline available in this interferometer is about 8,611 kilometers (5,351 mi).

<span class="mw-page-title-main">Parkes Observatory</span> Radio telescope observatory in New South Wales, Australia

Parkes Observatory is a radio astronomy observatory, located 20 kilometres (12 mi) north of the town of Parkes, New South Wales, Australia. It hosts Murriyang, the 64 m CSIRO Parkes Radio Telescope also known as "The Dish", along with two smaller radio telescopes. The 64 m dish was one of several radio antennae used to receive live television images of the Apollo 11 Moon landing. Its scientific contributions over the decades led the ABC to describe it as "the most successful scientific instrument ever built in Australia" after 50 years of operation.

<span class="mw-page-title-main">Square Kilometre Array</span> Radio telescope under construction in Australia and South Africa

<span class="mw-page-title-main">Effelsberg 100-m Radio Telescope</span> Radio telescope in Bad Münstereifel, Germany

The Effelsberg 100-m Radio Telescope is a radio telescope in the Ahr Hills in Bad Münstereifel, Germany. For 29 years the Effelsberg Radio Telescope was the largest fully steerable radio telescope on Earth, surpassing the Lovell Telescope in the UK. In 2000, it was surpassed by the Green Bank Observatory's Robert C. Byrd Green Bank Telescope in Green Bank, US, which has a slightly larger elliptical 100 by 110-metre aperture.

<span class="mw-page-title-main">Low-Frequency Array (LOFAR)</span> Radio telescope network located mainly in the Netherlands

The Low-Frequency Array, or LOFAR, is a large radio telescope, with an antenna network located mainly in the Netherlands, and spreading across 7 other European countries as of 2019. Originally designed and built by ASTRON, the Netherlands Institute for Radio Astronomy, it was first opened by Queen Beatrix of The Netherlands in 2010, and has since been operated on behalf of the International LOFAR Telescope (ILT) partnership by ASTRON.

<span class="mw-page-title-main">Reflector (antenna)</span>

An antenna reflector is a device that reflects electromagnetic waves. Antenna reflectors can exist as a standalone device for redirecting radio frequency (RF) energy, or can be integrated as part of an antenna assembly.

<span class="mw-page-title-main">RATAN-600</span> Radio telescope at the Special Astrophysical Observatory in southern Russia

The RATAN-600 is a radio telescope in Zelenchukskaya, Karachay–Cherkess Republic, Russia. It comprises a 576 m diameter circle of rectangular radio reflectors and a set of secondary reflectors and receivers, based at an altitude of 970 m. Each of the 895 2×7.4 m reflectors can be angled to reflect incoming radio waves towards a central conical secondary mirror, or to one of five parabolic cylinders. Each secondary reflector is combined with an instrumentation cabin containing various receivers and instruments. The overall effect is that of a partially steerable antenna with a maximum resolving power of a nearly 600 m diameter dish, when using the central conical receiver, making it the world's largest-diameter individual radio telescope.

<span class="mw-page-title-main">Algonquin Radio Observatory</span> Research facility in Ontario, Canada

The Algonquin Radio Observatory (ARO) is a radio observatory located in Algonquin Provincial Park in Ontario, Canada. It opened in 1959 in order to host a number of the National Research Council of Canada's (NRC) ongoing experiments in a more radio-quiet location than Ottawa.

<span class="mw-page-title-main">Medicina Radio Observatory</span> Astronomical observatory near Bologna, Italy

The Medicina Radio Observatory is an astronomical observatory located 30 km from Bologna, Italy. It is operated by the Institute for Radio Astronomy of the National Institute for Astrophysics (INAF) of the government of Italy.

<span class="mw-page-title-main">Qitai County</span> County in Xinjiang, China

Qitai County as the official romanized name, also transliterated from Uyghur as Guqung County or Gucheng County, is a county in the Xinjiang Uyghur Autonomous Region of China under the administration of the Changji Hui Autonomous Prefecture. It covers an area of 16,641 square kilometres (6,425 sq mi) and as of the 2002 census had a population of 230,000.

<span class="mw-page-title-main">Five-hundred-meter Aperture Spherical Telescope</span> Radio telescope located in Guizhou Province, China

The Five-hundred-meter Aperture Spherical radio Telescope, nicknamed Tianyan, is a radio telescope located in the Dawodang depression (大窝凼洼地), a natural basin in Pingtang County, Guizhou, southwest China. FAST has a 500 m (1,600 ft) diameter dish constructed in a natural depression in the landscape. It is the world's largest filled-aperture radio telescope and the second-largest single-dish aperture, after the sparsely-filled RATAN-600 in Russia.

<span class="mw-page-title-main">Arecibo Telescope</span> Former radio telescope in Puerto Rico

The Arecibo Telescope was a 305 m (1,000 ft) spherical reflector radio telescope built into a natural sinkhole at the Arecibo Observatory located near Arecibo, Puerto Rico. A cable-mount steerable receiver and several radar transmitters for emitting signals were mounted 150 m (492 ft) above the dish. Completed in November 1963, the Arecibo Telescope was the world's largest single-aperture telescope for 53 years, until it was surpassed in July 2016 by the Five-hundred-meter Aperture Spherical Telescope (FAST) in Guizhou, China.

<span class="mw-page-title-main">MeerKAT</span> 64 antenna radio telescope. South Africa (launched 2018)

MeerKAT, originally the Karoo Array Telescope, is a radio telescope consisting of 64 antennas in the Meerkat National Park, in the Northern Cape of South Africa. In 2003, South Africa submitted an expression of interest to host the Square Kilometre Array (SKA) Radio Telescope in Africa, and the locally designed and built MeerKAT was incorporated into the first phase of the SKA. MeerKAT was launched in 2018.

<span class="mw-page-title-main">Chinese Deep Space Network</span> Military unit

The Chinese Deep Space Network (CDSN) is a network of large antennas and communication facilities that are used for radio astronomy, radar observations, and spacecraft missions of China. The CDSN is managed by the China Satellite Launch and Tracking Control Center General (CLTC) of the People's Liberation Army Strategic Support Force Space Systems Department.

<span class="mw-page-title-main">Xinjiang Astronomical Observatory</span> Astronomical observatory in Xinjiang, China

Xinjiang Astronomical Observatory of the Chinese Academy of Sciences was known as Ürümqi Astronomical Observatory before it was renamed in January 2011.

The Vermilion River Radio Observatory (VRO) was a research facility operated by the University of Illinois from 1959 to 1984, featuring a 400-foot (120 m) linear parabolic radio telescope. The 420-acre (170 ha) site was a pioneering facility in radio astronomy.

References

  1. 1 2 "China Starts Building World's Largest Steerable Telescope----Chinese Academy of Sciences". english.cas.cn. Retrieved October 17, 2023.
  2. 1 2 3 4 5 6 Wang, Na; Xu, Qian; Ma, Jun; Liu, Zhiyong; Liu, Qi; Zhang, Hailong; Pei, Xin; Chen, Maozheng; Manchester, Richard N.; Lee, Kejia; Zheng, Xingwu; Kärcher, Hans J.; Zhao, Wulin; Li, Hongwei; Li, Dongwei (August 1, 2023). "The Qitai radio telescope". Science China Physics, Mechanics, and Astronomy. 66: 289512. arXiv: 2310.07163 . Bibcode:2023SCPMA..6689512W. doi:10.1007/s11433-023-2131-1.
  3. "QTT Specification". QTT International Advisory Workshop. Archived from the original on December 24, 2013. Retrieved April 8, 2013.
  4. 1 2 Na, Wang (May 2013). QiTai Radio Telescope. The Second China-U.S. Workshop on Radio Astronomy Science and Technology. Retrieved July 11, 2013.
  5. Atkinson, Nancy (January 24, 2018). "China Plans to Build the World's Largest Steerable Radio Telescope". Seeker. Retrieved February 11, 2018.
  6. Mack, Eric (January 17, 2018). "New biggest radio telescope to help detect alien signals". CNET.
  7. 1 2 "QTT Project Proposal". Proceeds of the Xinjiang Astronomical Observatory. 2012.
  8. "【中国科普博览】奇台射电望远镜:于无声处听宇宙-中国科学院新疆天文台". www.xao.ac.cn. Retrieved October 17, 2023.