Last updated
Structure of UBE's Upilex(r) Upilex.png
Structure of UBE's Upilex®

Upilex is a heat-resistant polyimide film that is the product of the polycondensation reaction between biphenyl tetracarboxylic dianhydride (BPDA) monomers and diamine. Its properties include dimensional stability, low water absorption, high chemical resistance and high mechanical properties (up to 550 MPa depending on film thickness), high heat and chemical resistance. [1] It was developed by UBE Industries. Upilex-S is the standard grade but other grades include Upilex-RN, VT, CA and SGA. Upilex-S is used when excellent mechanical properties are required, Upilex-RN possesses excellent molding processability, while Upilex-VT has superior heat bonding characteristics. General applications of Upilex include their use in flexible printed circuits, electric motor and generator insulation, high temperature wire and cable wrapping, and specialty pressure sensitive tapes. Polyimides have also been extensively studied in gas and humidity sensors. The concentration is then determined by monitoring the capacitance of modified Upilex films. With the advantages of flexibility and easy functionalization, Upilex films are often used as substrate materials in biosensor platforms. For instance, it is possible to electropolymerize onto these films or attach enzymes to it for the detection of glucose.

BPDA chemical compound

BPDA or biphenyl-tetracarboxylic acid dianhydride is a monomer used in the production of some polyimides.


Upilex-S, along with other polyimides Kapton HN and Kapton E, have been investigated by NASA with respect to their radiation durability for possible use in the Next Generation Space Telescope, where polymer film layer sunshields must operate at low temperatures and in the presence of cosmic rays. [2] Flexible superstrate solar cells have been directly grown on commercially available Upilex foils, which makes for lightweight solar cells with a high specific power. Micro-heating elements can be integrated on polyimide sheets, which gives it the benefit of robustness and low-power consumption required for high temperatures. Upilex membranes are not transparent because of their aromatic C-H stretching band, but this can be altered by substituting hydrogen atoms by deuterium atoms.

Kapton DuPont trademark polyimide film

Kapton is a polyimide film developed by DuPont in the late 1960s that remains stable across a wide range of temperatures, from −269 to +400 °C. Kapton is used in, among other things, flexible printed circuits and thermal blankets used on spacecraft, satellites, and various space instruments.

NASA space-related agency of the United States government

The National Aeronautics and Space Administration is an independent agency of the United States Federal Government responsible for the civilian space program, as well as aeronautics and aerospace research.

Cosmic ray High-energy particle, mainly originating outside the Solar system

Cosmic rays are high-energy radiation, mainly originating outside the Solar System and even from distant galaxies. Upon impact with the Earth's atmosphere, cosmic rays can produce showers of secondary particles that sometimes reach the surface. Composed primarily of high-energy protons and atomic nuclei, they are originated either from the sun or from outside of our solar system. Data from the Fermi Space Telescope (2013) have been interpreted as evidence that a significant fraction of primary cosmic rays originate from the supernova explosions of stars. Active galactic nuclei also appear to produce cosmic rays, based on observations of neutrinos and gamma rays from blazar TXS 0506+056 in 2018.

Related Research Articles

Vulcanization chemical process for converting natural rubber or related polymers into more durable materials

Vulcanization is a chemical process, invented by Charles Goodyear, used to harden rubber. Vulcanization traditionally referred to the treatment of natural rubber with sulfur and this remains the most common example, however the term has also grown to include the hardening of other (synthetic) rubbers via various means. Examples include silicone rubber via room temperature vulcanizing and chloroprene rubber (neoprene) using metal oxides.

Thermoplastic plastic that becomes soft when heated and hard when cooled

A thermoplastic, or thermosoftening plastic, is a plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.

James Webb Space Telescope Space observatory

The James Webb Space Telescope is a space telescope that will be the successor to the Hubble Space Telescope. The JWST will provide greatly improved resolution and sensitivity over the Hubble, and will enable a broad range of investigations across the fields of astronomy and cosmology. One of its major goals is observing some of the most distant events and objects in the universe, such as the formation of the first galaxies. These types of targets are beyond the reach of current ground- and space-based instruments. Other goals include understanding the formation of stars and planets, and direct imaging of exoplanets and novas.

O-ring mechanical, toroid gasket that seals an interface

An O-ring, also known as a packing, or a toric joint, is a mechanical gasket in the shape of a torus; it is a loop of elastomer with a round cross-section, designed to be seated in a groove and compressed during assembly between two or more parts, creating a seal at the interface.

Voice coil

A voice coil is the coil of wire attached to the apex of a loudspeaker cone. It provides the motive force to the cone by the reaction of a magnetic field to the current passing through it. The term is also used for voice coil linear motors, such as those used to move the heads inside hard disk drives, which produce a larger force and move a longer distance but work on the same principle.

Borosilicate glass type of glass with silica and boron trioxide as the main glass-forming constituents

Borosilicate glass is a type of glass with silica and boron trioxide as the main glass-forming constituents. Borosilicate glasses are known for having very low coefficients of thermal expansion, making them resistant to thermal shock, more so than any other common glass. Such glass is less subject to thermal stress and is commonly used for the construction of reagent bottles. Borosilicate glass is sold under such trade names as Borcam, Borosil, DURAN, Suprax, Simax, BSA 60, BSC 51, Heatex, Endural, Schott, Refmex, Kimble, MG(India) and some items sold under different trade names.

Engineering plastics are a group of plastic materials that have better mechanical and/or thermal properties than the more widely used commodity plastics.

Hot-melt adhesive solvent-free and at room temperature more or less solid products which are applied to the adhesive surface when hot

Hot melt adhesive (HMA), also known as hot glue, is a form of thermoplastic adhesive that is commonly sold as solid cylindrical sticks of various diameters designed to be applied using a hot glue gun. The gun uses a continuous-duty heating element to melt the plastic glue, which the user pushes through the gun either with a mechanical trigger mechanism on the gun, or with direct finger pressure. The glue squeezed out of the heated nozzle is initially hot enough to burn and even blister skin. The glue is tacky when hot, and solidifies in a few seconds to one minute. Hot melt adhesives can also be applied by dipping or spraying, and are popular with hobbyists and crafters both for affixing and as an inexpensive alternative to resin casting.

Space blanket

A space blanket is an especially low-weight, low-bulk blanket made of heat-reflective thin plastic sheeting. They are used on the exterior surfaces of spacecraft for thermal control, as well as by people. Their design reduces the heat loss in a person's body, which would otherwise occur due to thermal radiation, water evaporation, or convection. Their compact size before unfurling and light weight makes them ideal when space or weight are at a premium. They may be included in first aid kits and also in camping equipment. Lost campers and hikers have an additional possible benefit: the metallic surface appearance flashes in the sun, allowing use as an improvised distress beacon for searchers and also as a method of signalling over long distances to other people on the same route as the person who owns the blanket.

Magnet wire

Magnet wire or enameled wire is a copper or aluminium wire coated with a very thin layer of insulation. It is used in the construction of transformers, inductors, motors, speakers, hard disk head actuators, electromagnets, and other applications that require tight coils of insulated wire.

Polyether block amide or PEBA is a thermoplastic elastomer (TPE). It is known under the tradename of PEBAX® (Arkema) and VESTAMID® E. It is a block copolymer obtained by polycondensation of a carboxylic acid polyamide with an alcohol termination polyether, PEG). The general chemical structure is:

Solid solid object

Solid is one of the four fundamental states of matter. In solids molecules are closely packed. It is characterized by structural rigidity and resistance to changes of shape or volume. Unlike liquid, a solid object does not flow to take on the shape of its container, nor does it expand to fill the entire volume available to it like a gas does. The atoms in a solid are tightly bound to each other, either in a regular geometric lattice or irregularly. Solids cannot be compressed with little pressure whereas gases can be compressed with little pressure because in gases molecules are loosely packed.

A thermoset polymer matrix is a synthetic polymer reinforcement first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the space shuttle. In polymer matrix composites, polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements.

Materials for use in vacuum

Materials for use in vacuum are materials showing very low rate of outgassing in vacuum, and, where applicable, tolerant to the bake-out temperatures. The requirements grow increasingly stringent with the desired degree of vacuum achievable in the vacuum chamber. The materials can produce gas by several mechanisms. Molecules of gases and water can be adsorbed on the material surface. Materials may sublimate in vacuum. Or the gases can be released from porous materials or from cracks and crevices. Traces of lubricants, residues from machining, can be present on the surfaces. A specific risk is outgassing of solvents absorbed in plastics after cleaning.

Spacecraft thermal control process of keeping all parts of a spacecraft within acceptable temperature ranges

In spacecraft design, the function of the thermal control system (TCS) is to keep all the spacecraft's component systems within acceptable temperature ranges during all mission phases. It must cope with the external environment, which can vary in a wide range as the spacecraft is exposed to deep space or to solar or planetary flux, and with ejecting to space the internal heat generated by the operation of the spacecraft itself.

Sunshield (JWST) component of the James Webb Space Telescope

Sunshield is a component of the James Webb Space Telescope, designed to shield the main optics from the Sun's heat and light. This is part of a space telescope and it extends out unfolding a large metal-coated sheet of material post-launch. This material blocks the Sun's light and heat, so the telescope can see the faint light coming from stars and galaxies. The sunshield segment includes the layers and its deployment mechanisms, which also includes the trim flap.


  1. High Temperature Dielectric Properties of Apical, Kapton, Peek Upilex https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920019432_1992019432.pdf
  2. Next Generation Space Telescope Sunshield Materials Titles http://www.grc.nasa.gov/WWW/epbranch/TEMP/epbranch/other/nexttitles.htm

See also

A polyamide is a macromolecule with repeating units linked by amide bonds.

Polyamide-imides are either thermosetting or thermoplastic, amorphous polymers that have exceptional mechanical, thermal and chemical resistant properties. Polyamide-imides are used extensively as wire coatings in making magnet wire. They are prepared from isocyanates and TMA in N-methyl-2-pyrrolidone (NMP). A prominent distributor of polyamide-imides is Solvay Specialty Polymers, which uses the trademark Torlon.

Polyimide polymer of imide monomers

Polyimide is a polymer of imide monomers. Polyimides have been in mass production since 1955. With their high heat-resistance, polyimides enjoy diverse applications in roles demanding rugged organic materials, e.g. high temperature fuel cells, displays, and various military roles. A classic polyimide is Kapton, which is produced by condensation of pyromellitic dianhydride and 4,4'-oxydianiline.